
CHAPTER 5

NOISE AND DISTORSION
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NOISE AND SIGNAL-TO-NOISE RATIO

Noise can be generally defined as any undesireable signal that
masks or degrades the useful signal. This definition includes
deterministic noise, due to coupling with the clock signal for
example, and random noise whose origin is the fluctuation of a
physical quantity such as voltage or current.
Deterministic noise can usually be drastically reduced or even
eliminated by techniques such as shielding, filtering, or others.
By its nature, random noise cannot be predicted and therefore
cannot be eliminated. It can only be manipulated and reduced by
techniques such as filtering.
We will use the term noise uniquely for random noise. 
Noise is important because it represents the resolution limit for
many systems.
Noise, being a random signal, is described by its statistical prop-
erties such as its amplitude probability distribution at a certain
instant. In most cases it is not actually necessary to know the
probability density, but only the first- and second-order
moments corresponding to the average and the variance. 
In many cases, noise can be considered stationary.
The noise of a circuit or system must always be compared to the
signal that carries the useful information. We therefore intro-
duce the notion of Signal-to-Noise Ratio (SNR) which is the
ratio between the signal power and the noise power:

(5.1)SNR Average signal power
Average noise power

--------------------------------------------------------≡
Psignal

PN
----------------=
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SPECTRAL NOISE FACTOR

The spectral noise factor of a two-port network as shown in
Fig. 5-1 is defined as the ratio of the Power Spectral Density
(PSD) of the maximum output noise, No, and the PSD of the noise
due to the source resistance connected to the two-port network
input, Ni, measured at a temperature of 290 K:

(5.2)

where G(f) represents the gain in power of the two-port network
and Ni is the PSD of the noise at the input of the two-port net-
work due to the source. 

The contribution of basic noise at the output of the two-port
network is thus given by:

(5.3)

This basic contribution can be shifted to the two-port network
input as a PSD Np by dividing (5.3) by the gain G:

(5.4)

where  is the excess noise factor. The noise factor can
then be written as:

(5.5)

The noise factor is thus always greater than one.

Fig 5-1: Two-port network with noise, and noise factor.

F f( ) PSD of total noise at output
PSD at output due to source resistance RS
------------------------------------------------------------------------------------------------------≡

No f( )
G f( ) Ni⋅
--------------------=

noise

Si So

Ni No

Si = PSD of signal at input
Ni = PSD of noise at input
So = PSD of signal at output
No = PSD of noise at output

G

No GNi– FGNi GNi– F 1–( )GNi= =

Np F 1–( )Ni=

F 1–

F 1
Np
Ni
------+ 1>=
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NOISE FIGURE AND AVERAGE NOISE FACTOR

We define the noise figure NF by:

(5.6)

The minimum (ideal) value of F being equal to 1, the minimum
noise figure is equal to 0 dB. According to the definition given by
(5.2), the noise factor is a function of frequency. It is generally
defined for a set frequency. We can also define an average noise
factor which takes into account the bandwidth B of a system:

(5.7)

which reduces to the average value of F when the gain is con-
stant in the bandwidth B:

(5.8)

for  in the bandwidth B.

NF 10 F( )log 0dB>≡

F

No fd
B
∫

G f( )Ni fd
B
∫
------------------------≡

F f( )G f( )Ni fd
B
∫

G f( )Ni fd
B
∫

----------------------------------

F f( )G f( ) fd
B
∫

G f( ) fd
B
∫

----------------------------= =

F 1
B--- F f( ) fd

B
∫=

G f( ) G0 const.= =
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NOISE FACTOR AND SIGNAL-TO-NOISE RATIO

The noise factor can also be defined as a function of the signal-
to-noise ratio (SNR) at the input SNRi and at the output SNRo:

(5.9)

Eqn. 5.7 can be rewritten:

(5.10)

which for constant gain simplifies to:

(5.11)

The noise factor can thus be equivalently defined as the quotient
of the signal-to-noise ratio at the input and the signal-to-noise
ratio at the output. It is therefore a measure of the degrada-
tion of the signal-to-noise ratio at the output due to the basic
noise generated by the two-port network.

SNRi
PSi
PNi
---------≡

Si fd
B
∫

Ni fd
B
∫
--------------= and: SNRo

PSo
PNo
----------≡

G f( )Si fd
B
∫

No fd
B
∫

-------------------------=

F
PN0

G f( )Ni fd
B
∫
------------------------ 1

SNRo
--------------

PSo

G f( )Ni fd
B
∫
------------------------ 1

SNRo
--------------

G f( )Si fd
B
∫

G f( )Ni fd
B
∫
-------------------------= = =

F 1
SNRo
-------------

Si fd

B
∫

Ni fd

B
∫
--------------

SNRi
SNRo
-------------= =
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NOISE TEMPERATURE

The power available from a source impedance ZS corresponds to
the maximum power that it can deliver to a load impedance ZL.
We know that this situation is achieved when the load impedance
is equal to the complex conjugate of the source impedance:

(5.12)
In these conditions, the maximum power available from a source
impedance RS is given by:

(5.13)

where VS is the RMS source voltage. From this, we can deduce
the power available from a source of thermal noise:

(5.14)

We remark that this available thermal noise power is independ-
ent of the value of the source resistance. Thus,  is the max-
imum power available from any source that has an impedance
with a resistive term. We also define the PSD available from a
source in the bandwidth B as:

(5.15)

Note that this PSD is independent of the resistance value. The
noise factor can then be expressed by:

(5.16)

where T is the reference temperature (usually room tempera-
ture) and Na the contribution of the two-port network. 

ZL Z∗S=

PS
VS

2

4RS
---------=

PNi
4kTRSB

4RS
-------------------- kTB= =

kTB

Ni kT= 4 21–×10 J=( )

F 1
Na
kT
------+=
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NOISE TEMPERATURE

The noise factor is usually between 1 and 10. In certain cases, a
larger scale is necessary. We use instead of the noise factor,
the noise temperature Tr, defined by:

(5.17)

From which: (5.18)

F 1
Tr
T-----+≡

Tr F 1–( )T Na k⁄= =
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NOISE FACTOR OF CASCADING TWO-PORT 
NETWORKS

Consider the cascade connection of two 2-port networks, each
characterized by its power gain and noise factor (cf Fig. 5-2).

The global noise factor F is defined by:

(5.19)

The noise at the output of the first two-port network is equal to
the noise at the input Ni multiplied by the gain in power G1 plus
the contribution of the first two-port network at the output

:
(5.20)

The noise at the output of the second two-port network is equal
to the noise at the input N2 multiplied by the gain in power G2
plus the contribution of the second two-port network at the out-
put :

(5.21)

From which: (5.22)

For the case in which ,  and the global
noise factor is essentially determined by the first stage of the
cascade. Eqn. 5.22 can be easily generalized for the case of n
two-port networks in cascade (Friis Formula):

(5.23)

Fig 5-2: Noise factor of cascading two-port networks.

G1 , F1 G2 , F2
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Ni N2 N3

F
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----------
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G1G2Ni
--------------------= =
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N2 G1Ni F1 1–( )G1Ni+ F1G1Ni= =

F2 1–( )G2Ni
N3 G2N2 F2 1–( )G2Ni+ G2F1G1Ni F2 1–( )G2Ni+= =

F F1
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G2G1Ni
---------------------------------+ F1

F2 1–
G1

---------------+= =

G1>> F2 1–( ) F F1≅

F F1
F2 1–

G1
---------------

F3 1–
G1G2
--------------- …

Fn 1–
G1G2…Gn 1–
----------------------------------+ + + +=
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SENSITIVITY AND MINIMUM DETECTABLE SIGNAL

The power of the input signal PSi corresponding to a given signal-
to-noise ratio at the output SNRo is called the sensitivity of the
system. The level (in dBm) corresponding to PSi is called the min-
imum detectable signal (MDS).

For a system whose gain is constant in a frequency bandwidth B
and zero beyond this band (cf Fig. 5-3), the average noise factor
is given by:

(5.24)

From this we get the signal power for a given signal-to-noise
ratio at the output SNRo and a given average noise factor:

(5.25)

or in terms of the input signal level in dBm:

(5.26)

Fig 5-3: Gain in power of an ideal system.

B

f1 f2
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∫
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Lmin 10
PSi

1mW-------------⎝ ⎠
⎛ ⎞log≡ NF 10 kTB

1mW-------------⎝ ⎠
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EQUIVALENT NOISE SOURCES

A two-port network with noise can be modeled by the same two-
port network without internal noise sources, and two noise
sources VN and IN, independent of the values of the source
resistance RS and the load resistance RL (cf Fig. 5-4).

Note that the two noise sources are necessary in order to have a
complete description of the two-port network noise for all
source resistance values. In fact, when , the noise at the
output VNout is due only to the noise source VN, while if ,
it is due to the current noise source IN. Since each of these
sources considers the effects of the same physical causes of
noise, internal to the two-port network, they are usually not
independent. But in most cases, the correlation between VN and
IN is weak and can be neglected.

Fig 5-4: Noisy two-port network and its noiseless model, with 
equivalent noise sources at the input.

VNoutnoisyRS

VNoutnoiselessRS

VN

IN

RS 0=
RS ∞→
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CALCULATION OF EQUIVALENT NOISE SOURCES (1/2)

Voltage amplifier

The PSD SVN of the source VN of a voltage amplifier is calcu-
lated by evaluating the PSD of the output noise voltage of the
two-port network when the input is short-circuited, and dividing
it by the square of the voltage gain Av (cf Fig. 5-5 a). The PSD
SIN of the source IN is obtained by evaluating the PSD of the
output noise voltage of the two-port network when the input is
an open circuit, and dividing it by the square of the transimped-
ance Zm (cf Fig. 5-5 b).

a) Source of noise voltage.

b) Source of noise current.
Fig 5-5: Calculation of PSD of equivalent noise sources of a 

voltage amplifier.

VNoutnoisy VNoutnoiselessVN

SVN
SVNout

Av f( ) 2-----------------= Av
VNout

VN
--------------≡

VNoutnoisy VNoutnoiselessIN

SIN
SVNout

Zm f( ) 2------------------= Zm
VNout

IN
--------------≡
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CALCULATION OF EQUIVALENT NOISE SOURCES (2/2)

Transconductance amplifier

The PSD SVN of the source VN of a transconductance amplifier
is calculated by evaluating the PSD of the output noise current
of the two-port network when the input is short-circuited, and
dividing it by the square of the transadmittance Ym (cf Fig. 5-
5 a). The PSD SIN of the source IN is obtained by evaluating the
PSD of the output noise current of the two-port network when
the input is an open circuit, and dividing by the square of the
current gain Ai (cf Fig. 5-5 b).

a) Source of noise voltage.

b) Source of noise current.
Fig 5-6: Calculation of PSD of equivalent noise sources of a 

transconductance amplifier.

SVN
SINout

Ym f( ) 2------------------= Ym
INout
VN

-------------≡

INoutnoisy INoutnoiselessVN

SIN
SINout

Ai f( ) 2----------------= Ai
INout

IN
-------------≡

INoutnoisy INoutnoiselessIN
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EQUIVALENT NOISE VOLTAGE SOURCE FOR THE 
BIPOLAR TRANSISTOR 

The equivalent noise sources for the bipolar transistor can be
calculated from the small-signal model shown in Fig. 5-7.

By considering that  and , the low-fre-
quency noise current when the input is short-circuited is given
by:

(5.27)

The PSD of the current INout is thus:

(5.28)

from which we find the PSD of the source VN:

(5.29)

with: (5.30)

Fig 5-7: Small-signal model of the bipolar transistor, including 
the noise sources.

CBEgbeINB

VNBrbb’
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gm VBEΔ

SVNB 4kTrbb'= SINB 2qIB Kf
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f
--------+= SINC 2qIC=

E

CB

VBEΔ

gce<<gm gberbb'<<1

INout INC gm VBEΔ+ INC gmVNB–= =

SINout SINC gm
2 SVNB+=

SVN
SINout

gm
2--------------

SINC

gm
2----------- SVNB+

2qIC

gm
2------------ 4kTrbb'+= = =

4kT rbb'
1

2gm
---------+⎝ ⎠

⎛ ⎞ 4kTRN==

RN rbb'
1

2gm
---------+≡
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EQUIVALENT NOISE CURRENT SOURCE FOR THE 
BIPOLAR TRANSISTOR

The noise current when the input is an open circuit is:

(5.31)

Since the current gain is equal to , the PSD of the source
IN is:

(5.32)

The current gain as a function of the frequency is given by:

(5.33)

so (5.34)

The PSD of the source IN as a function of the frequency is
shown in Fig. 5-8.

Fig 5-8: PSD of the equivalent noise current source IN .

INout INC
gm INB⋅

gbe jωCBE+--------------------------------+ INC β jω( )INB+= =
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β jω( ) 2-------------------+⎝ ⎠
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f---------+= =
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βF

1 jβF f fT⁄( )+---------------------------------=
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⎛ ⎞ 2
+⎝ ⎠

⎛ ⎞+
⎝ ⎠
⎜ ⎟
⎛ ⎞

Kf
IB

AF

f--------+

2qIC
1

βF
------ f
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----⎝ ⎠

⎛ ⎞ 2
+⎝ ⎠

⎛ ⎞ Kf
IB

AF

f
--------+

≅=

SIN
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EQUIVALENT NOISE SOURCE OF AN AMPLIFIER 
CONNECTED TO A SOURCE 

Amplifier noise associated with a voltage source can be modeled
by a single noise source VNeq (cf Fig. 5-9), including the noise
from the source resistance 4kTRS and the noise from the ampli-
fication device.

The PSD of the output noise is given by:

(5.35)
The voltage gain between the source and the output being equal
to , the PSD of the equivalent noise voltage
source at the input is thus given by:

(5.36)

This PSD is independent of the parameters Zin and Av of the
amplifier, but depends on the source resistance RS .

Fig 5-9: Noisy amplifier and equivalent noise sources.

+

–

+

–

Zin Av VinVin VoutIN

VN4kTRSRS

VS

Zin Av VinVin
Vout

VNeqRS
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SVNout Av f( ) 2 Zin
Zin RS+--------------------

2
SVN

RSZin
Zin RS+--------------------

2
SIN+

Zin
Zin RS+--------------------

2
4kTRS+

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

contribution of the amplifier contribution of the source

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

Zin Zin RS+( )⁄( )Av f( )

SVNeq 4kTRS SVN RS
2SIN+ +=
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NOISE FACTOR OF AN AMPLIFIER AND OPTIMUM 
SOURCE RESISTANCE

The spectral noise factor of the amplifier in Fig. 5-9 is simply
given by the ratio between SVNeq and the contribution of the
source 4kTRS :

(5.37)

This noise factor is independent of the amplifier parameters Zin
and Av. In addition, it has a minimum for a value RSopt of the
source resistance:

(5.38)

The corresponding minimum noise factor is thus:

(5.39)

The noise figure corresponding to (5.37) is represented as a
function of RS in Fig. 5-10.

Fig 5-10: Noise figure corresponding to (5.37).

F
SVNeq
4kTRS
---------------- 1

SVN
4kTRS
----------------

SIN
4kT 1 RS⁄( )
----------------------------+ += =

RSopt
SVN
SIN
---------=

Fopt 1
SVN SIN⋅

2kT
--------------------------+=

RS

RSopt

NFopt

NF

S IN
 do

mina
tesS

VN  dominates
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OPTIMUM SOURCE RESISTANCE OF BIPOLAR AND 
MOS TRANSISTORS

The optimum source resistance and the mimimum noise factor
for a bipolar transistor (neglecting the 1/f noise, that is by set-
ting ), are calculated from:

(5.40)

We find:

(5.41)

From (5.41) we deduce that a low-noise bipolar transistor must
have a small base resistance rbb’ and a large current gain βF.
The optimum source resistance and the minimum noise factor for
a MOS transistor (without 1/f noise) are calculated from the
PSD of the equivalent noise sources at the input:

(5.42)

from which: (5.43)

The MOS transistor is thus well matched for large source
resistances.
In practice, for source resistances higher than 1 MΩ, the MOS
transistor offers a noise factor for white noise that is smaller
than that of the bipolar (for the same transconductance). But
the noise factor can be deteriorated by the presence of 1/f
noise, which is generally higher in a MOS transistor.

Kf 0=

SVN 4kT rbb'
1

2gm
---------+⎝ ⎠

⎛ ⎞= SIN 2qIB=

RSopt βF
1 2gmrbb'+

gm
--------------------------------= Fopt 1

1 2gmrbb'+

βF
--------------------------------+=

SVN 4kT γ
gm
------= SIN 0≅

RSopt ∞→ Fopt 1→
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IMPEDANCE MATCHING FOR MINIMUM NOISE

If the source resistance RS is fixed, it is useless to try to obtain
the condition  by adding series or parallel resistors.
In fact, they would only worsen the noise of the system. We can,
however, obtain the mimimum noise factor by using an (ideal)
transformer of ratio n as indicated in Fig. 5-11.

The PSD of the equivalent noise at the input is then given by:

(5.44)

This PSD is minimum for a transformation ratio nopt :

(5.45)

(5.46)
This optimum ratio also gives the mimimum noise factor.

Fig 5-11: Source impedance matching for a mimimum noise fac-
tor.

RS Ropt=

+

–
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VS Vout

SVN

SIN

4kT RS 1:n

+

–

RS

VS

Vout

4kT RS 1:n

ideal transformer

noiseless
amplifier

n2SIN

SVN n2⁄

R′S

SVNeq 4kTRS
SVN

n2---------- n2 RS
2SIN⋅+ +=

nopt
2

R′S
RS
--------

RSopt
RS

------------- 1
RS
------

SVN
SIN
---------= = =

SVNeq 4kTRS 2RS SVNSIN+ 4kTRS 1
SVNSIN
2kT-----------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

4kTRS Fopt⋅= = =
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IMPEDANCE MATCHING BY AUTOTRANSFORMER

The impedance level of narrowband circuits can be modified with
an autotransformer as indicated in Fig. 5-12.

For perfect coupling, the coupling factor . The diagram in
Fig. 5-12 a) can then be replaced by that of Fig. 5-12 b), which
shows that the source impedance is multiplied by the square of
the transformation ratio n.

(5.47)

The impedance as seen from the secondary is therefore:

(5.48)

The noise can thus be minimized by choosing n according to
(5.45).

a) b)
Fig 5-12: Changing the impedance level by using an autotrans-

former.

RS
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L2
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L L1 L2 2M+ +=

k
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LL2
-----------------≡

L CR'S

R'S n2RS
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L2
------⎝ ⎠

⎛ ⎞ RS≅=

n k L
L2
------⋅ L

L2
------≅≡

k 1≅

n L
L2
-----=

R'S n2RS
L
L2
-----⎝ ⎠

⎛ ⎞ RS≅=
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IMPEDANCE MATCHING BY CAPACITIVE DIVIDER

For the case in which the input impedance of the amplifier stage
is inductive, the source impedance level can be changed by using
the circuit shown in Fig. 5-13 if ω >> (RsC2)-1.

For frequencies , the resistance seen by the
inductance equals the source resistance multiplied by :

(5.49)

The noise can thus be minimized by choosing n according to
(5.45).

a) b) c)
Fig 5-13: Changing the impedance level with a capacitive 

divider.

RS C2

C1

L C LR'S
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------+
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C1 C2+--------------------=
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-----------=
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n2
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C2
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TOTAL EQUIVALENT INPUT NOISE FOR A RESISTIVE 
SOURCE

As indicated in Fig. 5-14, the block made up of an amplifier, of
which the noise is modeled by two noise sources SVN and SIN, and
an impedance source RS, can be modeled by a single noise voltage
source in series with the source VS with PSD SVNeq:

(5.50)

Notice that this PSD is minimum when  and not for
, value for which the contribution of SVN is equal to

that of SIN:

(5.51)

Eqn. 5.50 is graphed as a function of the source resistance RS in
Fig. 5-15.

Fig 5-14: Total equivalent noise source at the input.

Fig 5-15: SVNeq as a function of RS .
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VOLTAGE AMPLIFIER WITH RESISTIVE SOURCE (1/4)

Equivalent circuit

Consider the voltage amplifier presented in Fig. 5-16.

Ignoring the correlations that exist between SVNa+ and SINa+
(SVNa– and SINa–), the PSD of the equivalent noise voltage at the
input is given by:

(5.52)

with: (5.53)

a)

b)
Fig 5-16: Voltage amplifier and equivalent noise model.
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VOLTAGE AMPLIFIER WITH RESISTIVE SOURCE (2/4)

Bipolar input stage

For the case in which the input stage of the amplifier is realized
with bipolar transistors, the PSD SVNa+ and SINa+ are given by
the equations (5.29) and (5.34). Ignoring the 1/f noise ( ),
we find the PSD SVNeq:

(5.54)

for f << fT and βF >> 1. Notice that SVNeq has a minimum for one
particular value of the polarization current ICopt:

(5.55)

The mimimum value of the PSD SVNeq is thus given by:

(5.56)
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⎝ ⎠
⎜ ⎟
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+⎝ ⎠

⎛ ⎞+=
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⎜ ⎟
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⎝ ⎠
⎜ ⎟
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VOLTAGE AMPLIFIER WITH RESISTIVE SOURCE (3/4)

Optimum polarization current

The equivalent noise resistance RNeq normalized to the source
resistance RS is graphed in Fig. 5-17 as a function of the polari-
zation current for a bipolar transistor. For rbb’ = RS = R1 = 50 Ω
and βF = 200, we find ICopt = 7.35 mA.

Fig 5-17: Optimum polarization current.
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VOLTAGE AMPLIFIER WITH RESISTIVE SOURCE (4/4)

MOS input stage

For the case in which the input transistors are MOS transistors,
we have:

(5.57)

The equivalent PSD of the input noise is thus given by:

(5.58)

which simplifies at low frequency ( ) to:

(5.59)

In this case, there is no optimum as a function of polarization.
The noise contribution of the MOS transistors can be made neg-
ligible compared to the noise term due to the resistances, by
reducing SVNa+ and SVNa–. This is achieved by increasing the
transconductance and the gate area WL of the MOS transistor.
The frequency for which the white noise is equal to the 1/f noise
(the corner frequency) is given by:

(5.60)
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⎧ ⎫
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2 R12

2+⎝ ⎠
⎛ ⎞⁄

SVNeq 4kT RS R12 2 γ
gm
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Kf
WLf----------++ +

⎝ ⎠
⎜ ⎟
⎛ ⎞
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2Kf
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------+ +⎝ ⎠

⎛ ⎞
------------------------------------------------=
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HARMONIC DISTORSION

Single tone input signal

Although components such as amplifiers and transistors are
often considered as linear elements, they have nonlinear trans-
fer characteristics. Fig. 5-18 shows the typical transfer charac-
teristic of an amplifier. It is made up of a linear portion and two
saturation zones. We apply a sinusoidal input signal:

(5.61)

with . As long as the signal amplitude is less than Xmax,
the output signal is likewise sinusoidal with the same frequency.
When X1 > Xmax, the output signal will be subject to distortion.
It then contains frequency components which are multiples of ω0
or harmonics. The harmonic components will depend on the input
amplitude, the maximum amplitude Xmax, and the nonlinear char-
acteristics.

Fig 5-18: Transfer characteristic of an amplifier.

x t( ) X1 ω0t( )cos= or x φ( ) X1 φ( )cos=

φ ω0t≡

–Xmax Xmax

Ymax

–Ymax

X1
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FOURIER SERIES OF THE OUTPUT SIGNAL

The output signal y(t), remaining periodic, can be broken down
into a Fourier series:

(5.62)

The coefficients an, bn, rn and αn are given by:

(5.63)

In the case of the saturation characteristic of Fig. 5-18, we
remark that the average value of the output signal is zero and
thus a0 = 0. In addition, the output signal y(φ) shown in Fig. 5-18
being an even function of φ, the coefficients bn are all zero.
Since the transfer characteristic is odd, the output only con-
tains odd harmonics. It can be shown that the coefficient corre-
sponding to the fundamental is given by:

(5.64)

where: (5.65)

When X1 ≤ Xmax, the system is linear, and therefore there are no
harmonics. In this case the output signal is simply given by

 and so  which
corresponds to .
The amplitude of the harmonics greater than 1 is given by:

(5.66)

y φ( )
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π
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1
π
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π–
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rn an
2 bn

2+= and: αn bn an⁄( )atan=
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⎨
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⎪
⎧
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COMPRESSION

The function f(ξ) given by (5.65) and permitting the calculation
of the amplitude of the fundamental is shown in Fig. 5-19 as a
function of ξ. This figure shows that the amplitude of the output
signal fundamental decreases as a function of the input signal
amplitude. This phenomenon is called compression.

The compression rate (CR) is defined as the ratio between the
amplitude of the fundamental output signal of the nonlinear sys-
tem and the amplitude of the fundamental output signal of an
ideal linear system:

(5.67)

For the characteristic in Fig. 5-18, the compression rate is:

(5.68)

It is generally expressed in dB. It is common to refer to the
amplitude corresponding to a compression rate of –1 dB.

Fig 5-19: Function f(ξ) given by (5.65) as a function of ξ.

CR fundamental amplitude
linear system fundamental amplitude---------------------------------------------------------------------------------------- 100%⋅≡

CR
a1

k1X1
------------

k1X1 f ξ( )⋅

k1X1
------------------------- f ξ( )= = =
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APPROXIMATION OF HARMONIC AMPLITUDE

We can estimate the amplitude of the harmonics at the output
of a nonlinear memoryless system excited by a sinusoidal signal,
by expanding the nonlinear characteristic with a Taylor series:

(5.69)

By introducing the sinusoidal signal (5.61) and developing, we
obtain:

(5.70)

with: (5.71)

For a perfectly linear system without offset
( ) the output signal is sinusoidal and its ampli-
tude Y1 simply reduces to . The factor k1 then corresponds
to the gain of the linear system. For a nonlinear system, the out-
put signal is no longer sinusoidal (but is still periodic with the
same period as the input signal). The amplitude of the fundamen-
tal Y1 is modified by the cubic term  and can thus be
either larger or smaller than that obtained when considering the
system to be linear. For a nonlinear system dominated by the
cubic term, we then refer to an expansion characteristic when

 and a compression characteristic when .

y k0 k1x k2x2 k3x3 …+ + + +=

y Y0 Y1 φ( )cos Y2 2φ( )cos Y3 3φ( )cos …+ + + +=

Y0 k0
1
2---k2X2 …+ +=

Y2
1
2---k2X2 …+=

Y1 k1X 3
4---k3X3 …+ +=

Y3
1
4---k3X3 …+=

ki 0= i 1≠∀
k1X

3 4⁄( )k3X3

k3 0> k3 0<
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COMPRESSION POINT AT –1 dB

The compression point at –1 dB (or expansion point at +1 dB) cor-
responds to the amplitude X–1dB (or X+1dB) for which the funda-
mental is 1 dB from the value obtained when considering the
system as perfectly linear (cf Fig. 5-20). These amplitudes are
given respectively by:

(5.72)

or expressed in dB:

(5.73)

Fig 5-20: Expansion or compression point at ±1 dB.
X–1dB X+1dB

X (log)

Y1 (log) k1 X 3
4--- k3 X3+

k1 X
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k1 X 3
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X–1dB
4
3--- 1 10 1 20⁄––( )

k1
k3
-----= X+1dB

4
3--- 101 20⁄ 1–( )

k1
k3
-----=

20 X–1dB( )log 10 k1
k3
-----⎝ ⎠

⎛ ⎞log 8.386–= dB[ ]

20 X+1dB( )log 10 k1
k3
-----⎝ ⎠

⎛ ⎞log 7.886–= dB[ ]
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HARMONIC DISTORTION INTERCEPT (HDI)

Fig. 5-21 shows the harmonic components Y1 and Y3 as a function
of the input signal amplitude X in a log-log graph for the case in
which the nonlinearity is dominated by the cubic term. The com-
pression of the fundamental is thus mainly due to the cubic term

 and the compression of the third harmonic is negligible.
Notice that the amplitude of the 3rd harmonic increases three
times as quickly as that of the fundamental (in a log-log dia-
gram). The amplitude XHDI (HDI=Harmonic Distortion Inter-
cept) corresponding to the intersection point between the
fundamental when considering the system to be linear, and the
3rd harmonic (without compression) is given by:

(5.74)

or as: (5.75)

The compression point at –1 dB is located 14.41 dB below the
intersection point:

(5.76)

Fig 5-21: Harmonic distortion intercept.
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4--- k3 X3
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3= XHDI→ 2 k1 k3⁄⋅=
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⎛ ⎞log– 14.41 dB= =
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EXAMPLE 1: EXPONENTIAL CHARACTERISTIC (1/2)

For the exponential characteristic of a bipolar transistor, the
collector current for a base-emitter control voltage

 is given by:

(5.77)

where  is the bias current defined for
 and . We can thus normalize the cur-

rent  to Iq:

(5.78)

It can be shown that the Fourier series development of the
function (5.78) is given by:

(5.79)

where  is the modified Bessel function of order 0 and
 is the modified Bessel function of order n. For an expo-

nential function, it is thus possible to calculate the harmonics Yn
exactly. But unfortunately, this is not always possible. So we can
compare the harmonics calculated exactly by (5.79) to those
obtained by expanding the normalized exponential characteristic

 in a Taylor series:

(5.80)

where .

vbe t( ) VBEq VBEΔ ω0t( )cos⋅+≡

ic t( ) Is
VBEq VBEΔ ω0t( )cos⋅+

UT
-------------------------------------------------------------exp⋅ Iq X ω0t( )cos⋅[ ]exp⋅= =

Iq Is VBEq UT⁄[ ]exp⋅≡
VBEΔ 0= X VBEΔ UT⁄≡

ic t( )

y t( )
Ic t( )
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---------≡ X ω0t( )cos⋅[ ]exp=

y t( ) X ω0t( )cos⋅[ ]exp I0 X( ) 2 In X( ) nω0t( )cos⋅

n 1=

+∞

∑⋅+= =

I0 X( )
In X( )

y t( )

y t( )
Ic t( )
Iq

---------≡ ex 1 x x2

2-----
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6-----+ + +≅=

x t( ) X ω0t( )cos⋅≡
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EXAMPLE 1: EXPONENTIAL CHARACTERISTIC (2/2)

From (5.80) we get the coefficients  and  and
the expansion point at +1 dB:

(5.81)

and the intersection point of the harmonics:

(5.82)

The expansion point at +1 dB and the intersection point of the
harmonic components are represented in Fig. 5-22. Notice that
the approximation of the compression by using the expansion
(5.80) is very close to the exact characteristic. In addition, we
see that the third harmonic is subject to expansion and moves
away from the right.

Fig 5-22: Expansion point at 1 dB and intersection of harmonic 
components for an exponential.

k1 1= k3 1 6⁄=

20 X+1dB( )log 0.1 dB–=

20 XHDI( )log 13.8 dB=
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EXAMPLE 2: THE DIFFERENTIAL PAIR (1/2)

The differential current of a bipolar differential pair is simply
given by:

(5.83)

where Vin is the differential input voltage and Iq half of the tail
current (or the bias current of each of the transistors when

). Unlike the case of the exponential function, there is
no analytic expression for the Fourier series expansion of (5.83)
with . This characteristic can nevertheless
be approximated with a Taylor series expansion:

(5.84)

Notice that there is no even term. From (5.84) we get 
and . This approximation is represented in Fig. 5-23
with the function  as well as another approximation:

(5.85)

We remark that the approximation (5.85) is better (error less
than 2% for ) than that given by the Taylor expansion
(5.84) (error less than 2% for ).
The amplitude of the fundamental calculated using approxima-
tions (5.84) and (5.85), along with the amplitude of the linear
system, are shown in Fig. 5-24. The compression point calculated
from (5.73) is given by –3.6 dB for (5.84) and –2.44 dB for
(5.85). The first and third harmonics intersect at the point
10.8 dB using the approximation (5.84).

y iΔ
Iq
-----≡ x( )tanh= with x

Vin
2UT
----------≡

Vin 0=

x t( ) X ω0t( )cos⋅=

y x( )tanh x x3

3-----–≅≡

k1 1=
k3 1 3⁄–=

x( )tanh

y x( )tanh x 0.254 x3⋅–≅≡

x 1≤
x 0.59≤
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EXAMPLE 2: THE DIFFERENTIAL PAIR (2/2)

Fig 5-23: Tanh(x) and 3rd degree approximation.

Fig 5-24: Compression point at –1 dB and intersection point of 
harmonics 1 and 3 for a tanh characteristic.
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HARMONIC DISTORTION RATE

One measure of the distortion of a signal is given by the ratio
between the harmonic amplitude n (rn) and the amplitude of the
fundamental r1, measured as a percentage:

(5.86)

The total harmonic distorsion rate (THD) is the ratio between
the RMS value of the harmonics  and the RMS value of the
distorted signal at the output for a sinusoidal input signal:

(5.87)

The THD can often be approximated by considering only the
first harmonics, because the amplitude of the harmonics gener-
ally decreases very quickly.
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INTERMODULATION

Sinusoidal “duo tone” input signal

Consider a nonlinear system with a static polynomial characteris-
tic:

(5.88)

Let us consider the case of a signal composed of two sinusoidal
waves:

(5.89)

where  (i = 1,2). The output signal is obtained by substi-
tuting (5.89) into (5.88). Let’s look at the result term by term.
The linear term is given by:

(5.90)

The amplitudes of the sinusoidal waves are simply multiplied by
the gain k1. The quadratic term is given by:

(5.91)

In addition to the constant term (at zero frequency) and second
harmonics, the signal contains two equal amplitude components
for which the frequencies are the sum and the difference of the
input signal frequencies. These components are called second
order intermodulation products (IM2). Thus, the nonlinearity
corresponding to the quadratic term generates second order
intermodulation products whose amplitudes depend linearly on X1
and X2.
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k2x2 k2 X1 φ1( )cos X2 φ2( )cos+[ ]2=

k2 X1
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2------------+
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⎫

= constant term=
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⎫
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3rd ORDER INTERMODULATION PRODUCTS 

The cubic term is given by:

(5.92)

After expansion, we get:

(5.93)

Eqn. 5.93 shows that the 3rd order nonlinearity produces funda-
mental components along with 3rd order harmonics. In addition,
we find 3rd order IM products at the frequencies 2f1 + f2 ,
2f2 +f1 , 2f1 –f2 and 2f2 –f1. When the frequencies f1 and f2 are
close, the components at frequencies 2f1 –f2 and 2f2 –f1 become
particularly bothersome, because they fall into the useful trans-
mission band and are thus difficult to eliminate by selective fil-
tering.
The same approach can be used for nonlinearities of order
higher than 3. In general, an nth order nonlinearity produces
harmonics that are multiples of the frequencies f1 and f2 up to n.
If n is even (odd), they are all even (odd) multiples of f1 and f2.
If n is even, there is no fundamental, but there is a constant
term.
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⎝ ⎠
⎜ ⎟
⎛ ⎞
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⎝ ⎠
⎜ ⎟
⎛ ⎞

φ2( )cos+=
⎭
⎬
⎫

fundamentals=

+
k3X1

3

4------------ 3φ1( )cos
k3X2

3

4------------ 3φ2( )cos+
⎭
⎬
⎫

3rd harmonics=

+
3k3X1

2X2
4---------------------- 2φ1 φ2+( )cos 2φ1 φ2–( )cos+[ ]

+
3k3X1X2

2

4---------------------- 2φ2 φ1+( )cos 2φ2 φ1–( )cos+[ ]
⎭
⎪
⎪
⎬
⎪
⎪
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INTERMODULATION PRODUCTS

In general, the intermodulation products generated by a nonline-
arity of order n are given by:

(5.94)

where the upper frequencies are obtained by taking the two plus
signs and the lower frequencies are obtained by taking opposite
signs such that the resulting frequencies remain positive. The
two minus signs are thus never used. Taking , cer-
tain odd-order IM products are given by:

The IM product components closest to the fundamental fre-
quencies f1 and f2 are presented in Fig. 5-25.

n

3

5

7

Fig 5-25: Odd IM products around f1 and f2
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DESENSITIZATION AND BLOCKING (1/2)

A desired input signal  added to an interfering signal
 is applied to a nonlinear system with the character-

istic shown in Fig. 5-26 and described by:

(5.95)

The output signal y1 at the frequency f1 for an input signal ampli-
tude less than 2 (no saturation), is given by:

(5.96)
The compression rate for the case in which the amplitude of the
interfering signal is much weaker than the amplitude of the
desired signal is given by:

(5.97)

The amplitude corresponding to a compression rate of –1 dB is
thus 1.32 V, which is in agreement with the hypothesis that

. For small amplitudes X1, the system functions as a lin-
ear amplifier.

Fig 5-26: Odd nonlinear characteristic.
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DESENSITIZATION AND BLOCKING (2/2)

Let us consider the case in which the amplitude of the useful
signal is small (for example ) and the interfering signal
becomes dominant, so:

(5.98)

We notice that the effect of the interfering signal is to reduce
the amplitude of the useful signal at the output. This phenome-
non, called desensitization, is similar to compression, but is
caused by a strong interfering signal at a different frequency.
We define a desensitization ratio by:

(5.99)

In our case we have:

(5.100)

For X1 < 0.4 V and X2 = 1.6 V, we have DSdB = –3.35 dB. We
thus speak of a desensitization of about 3 dB that represents a
reduction of the useful signal amplitude by a factor  and thus
a reduction of the power by a factor of two.
In an extreme case, a large enough interfering signal can even
cancel out the amplitude of the desired signal. This phenomenon
is called blocking. In our case, the amplitude X2 provoking the
cancellation of the useful signal is given by , corre-
sponding to X2 = 2.83 V. This amplitude is larger than 2 V and
therefore does not satisfy the hypotheses. Nevertheless, we
can imagine a system with a useful signal that is cancelled out
entirely by an interfering signal at another frequency.
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y1 12X1 1
X2

2

8------–⎝ ⎠
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desired output signal without interfering signal-----------------------------------------------------------------------------------------------------------------------------------------------≡
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THIRD-ORDER INTERCEPT POINT (IP3) (1/2)

Consider the case in which the amplitude of the interfering sig-
nal is equal to the amplitude of the desired signal
(X1 = X2 = Vin). The average power of the input signal Pin and its
corresponding level Lin are:

(5.101)

The factor 2 in (5.101) comes from the fact that Vin is a peak
value and not an RMS value. The level of the linear term of the
signal at the system output is given by:

(5.102)

where G is the gain in power , which can be
expressed as a function of the voltage gain k1 and the ratio
between the input resistance Rin and the load resistance RL:

(5.103)

The amplitude of the 3rd order IM product at  is equal
to . The average power corresponding to the load terminal
RL is thus:

(5.104)

corresponding to a level Lout3:

(5.105)

where: (5.106)
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THIRD-ORDER INTERCEPT POINT (IP3) (2/2)

The levels Lout1 corresponding to the fundamental and Lout3 cor-
responding to the 3rd order IM product at , are shown
as a function of the input level Lin in Fig. 5-27. The intersection
point of the lines Lout1 and Lout3 is called the third-order inter-
cept point (PI3). This point can be specified either by its projec-
tion on the x-axis IIP, or by its projection on the y-axis of Lout1
(OIP). Unfortunately, this point cannot be measured directly
because it corresponds to an extrapolation. The phenomena of
compression, desensitization, and higher-order IM products
deteriorate the linearity of the system for high power signals. 

The value of IIP can be expressed as a function of k1 and k3 by
using equations (5.102), (5.103) and (5.105) in the following man-
ner:

(5.107)

Fig 5-27: 3rd order intercept point.
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RELATIONSHIP BETWEEN THE COMPRESSION POINTS 
AND INTERCEPT POINTS IN “SINGLE TONE” AND “DUO 

TONE”

The relationship between the compression points at -1 dB and
the intercept points measured in “single tone” and “duo tone” are
illustrated in Fig. 5-28. Notice that the compression and inter-
cept points measured in “single tone” are 4.77 dB higher than
the compression and intercept points measured in “duo tone”. We
can thus deduce the intercept point IIP from a “single tone”
measurement, which is much easier to do than a “duo tone” meas-
urement. This is not entirely correct in the case of a narrow-
band system, because the harmonics of a sinusoidal signal gener-
ally fall outside of the useful band and are thus strongly attenu-
ated while the 3rd order intermodulation products fall in the
baseband and are not attenuated.

Fig 5-28: Relationship between the compression points at -1 dB 
and the intercept points measured in “single tone” and 
“duo tone.”
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COMPARISON FOR A DIFFERENTIAL PAIR 

A comparison between the compression and intercept points for
“single tone” and “duo tone” signals in the case of a differential
pair is presented in Fig. 5-29. Once again we find a difference of
4.77 dB.

Fig 5-29: Comparison of compression and intercept points 
for“single tone” and “duo tone” signals for a differen-
tial pair.
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INTERMODULATION DISTORTION RATIO

The Intermodulation Distortion Ratio (IMR) is the ratio between
the amplitude of one of the 3rd order IM products and the
amplitude of the linear term:

(5.108)

The ratio between the power of the 3rd order IM products at
the output and the power of the linear term for the amplitudes
X1 = X2 = Vin is given by:

(5.109)
By definition, this ratio is equal to one when the input signal level
is equal to IIP corresponding to a power PIIP, from which we get:

(5.110)

In decibels we have:
(5.111)

We can thus express IIP as a function of PIMR-dB and Lin:

(5.112)

The projection of the intersection point at the output is then
simply given by:

(5.113)
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MINIMUM DETECTABLE SIGNAL AND NOISE FLOOR

We have seen that the average noise factor  represents the
quotient of the signal-to-noise ratios at the input SNRi and the
output SNRo of the two-port network. The minimum detectable
signal (MDS) corresponds to the value of the signal which must
be applied at the input in order to have a given signal-to-noise
ratio at the output. From (5.26), we find:

(5.114)

For T = 290 K and  we have:

(5.115)

where BkHz is the bandwidth expressed in kHz. The output signal
level corresponding to an MDS level at the input is called the
Noise Floor. When the input signal exceeds the MDS, the output
signal level increases linearly beyond the noise floor. The level of
the IM product increases three times faster, but is initially lost
under the noise floor.

Fig 5-30: Relationship between the MDS and the noise floor.
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DYNAMIC RANGE (1/2)

The dynamic range of a system is defined by the ratio between
the maximum and minimum signals that the system can process.
The minimum signal is limited by the noise while the maximum
signal is limited by distortion. For a narrow-band system such as
a receiver, the maximum signal is basically limited by the 3rd

order IM products. The definition of the mimimum signal level
generally corresponds to the MDS. The maximum signal can be
defined in multiple ways. One possible definition corresponds to
the input signal level LIM for which the level of the IM product
is equal to the MDS (cf Fig. 5-31).

The Spurious Free Dynamic Range (SFDR) of the system is then
defined as the difference between LIM and MDS:

(5.116)

Fig 5-31: Relationship between the MDS and the dynamic range.
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DYNAMIC RANGE (2/2)

The maximum signal can be alternatively defined as the signal
that produces a 1 dB compression of the fundamental. If L1dB is
the corresponding input level (cf Fig. 5-31), the dynamic range is
equal to the difference between L1dB and MDS:

(5.117)

The dynamic range can also be defined as a function of the signal
level LΔ for which the third-order IM product Lout3 is at a value

 (typically 60 dB) below the level Lout1 cor-
responding to LΔ:

(5.118)

One can define several relationships from the geometry shown in
Fig. 5-31. Let b be the distance between the lines Lout1 and Lout3
and a be the distance between the line Lout3 and the point IIP.
Since the lines Lout1 and Lout3 have, respectively, slopes of 1 and
3, then . Drawing a horizontal line that passes through
the point F, we find that  and therefore

, from which we find the relationship
for IIP:

(5.119)

In addition, we see that , which lets us
write:  and so:

(5.120)

In a similar way, we see that , from which
we find the maximum input signal level for which the level of the
IM product is equal to the MDS:

(5.121)
An input signal level higher than that given by (5.121) gives an IM
product that increases three times faster than the desired sig-
nal, and causes an unacceptable distorsion.
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2nd ORDER INTERCEPT POINT (1/2)

The second-order IM products are given by . For the
case in which f2 >> f1, the frequency  can be
near f2 and thus interfere with the system. In the same way as
for the 3rd order IM products, we define an intercept point of
the second-order IM products (cf Fig. 5-32).

The amplitudes of the second order IM products are both equal
to . The average power corresponding to the terminals of
the load RL is:

(5.122)

corresponding to a level Lout2:

(5.123)

where: (5.124)

Fig 5-32: 2nd order intercept point.
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2nd ORDER INTERCEPT POINT (2/2)

The projection of the second-order intercept point is given by:

(5.125)

The difference between the projections of the 3rd and 2nd order
intercept points is given by:

(5.126)
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EXAMPLE (1/2)

Consider an electronic system with a bandwidth of 10kHz, and
input and load resistances of 50Ω. The input is matched to two
signal generators through the help of an adder for which the
attenuation is 6dB. The frequency of the two sine waves applied
to the input are f1 = 3800 kHz and f2 = 3802 kHz. When the
adder is calibrated, the level of each of the signals before the
adder is equal to 4 dBm. For this same input signal, the spectrum
analyzer measures a level of each of these two signals at the
output equal to 5 dBm and indicates that the 3rd order IM com-
ponents are located 16 dB lower. We assume that the other IM
components are negligible and that there is no compression. The
measured noise level when there is no input signal is equal to –36
dBm. We are asked to calculate:

1)The corresponding input level Lin;
2)The gain in power GdB;
3)The 3rd order intercept point IIP;
4)The mimimum detectable signal MDS;
5)The dynamic range SFDR of the system;
6)The noise figure NF;
7)The maximum RMS voltage at the system input before the 

3rd order IM products become perceptible.
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EXAMPLE (2/2)

1)The input level is simply given by the difference between 
the level measured before the adder (+4 dBm) minus the 
attenuation of the adder (6 dB), so:

(5.127)

2)The gain in power is given by:
(5.128)

3)From (5.119), with  and , we get:

(5.129)

4)In the graph in Fig. 5-31, the distance CD is equal to 36 + 
7 + 6 = 49 dB, which also corresponds to the distance AC. 
So:

(5.130)
which corresponds to an RMS voltage at the input of 1.58
mV.

5)From (5.120) we get:

(5.131)

6)From (5.115) we get:

(5.132)
7)From (5.121) we get:

(5.133)

which corresponds to an RMS voltage at the input of 68.1
mV.

Lin 4 6– 2dBm–= =

G Lout LΔ– 5 2–( )– 7dB= = =

LΔ Lin= IMΔ 16 dB=

IIP ΔIM
2----------- LΔ+ 16

2------ 2–( )+ 6dBm= = =

MDS IIP 49– 6 49– 43dBm–= = =

SFDR 2
3--- IIP MDS–( ) 2

3--- 6 43–( )–( ) 32.67dB= = =

NF MDS 10 BkHz( )log 144+– 43– 10– 144+ 91dB= = =

LIM
2IIP MDS+

3
------------------------------- 2 6⋅ 43–

3
---------------------- 10.33dBm–= = =



© C. C. ENZ Noise and distorsion 22.9.10

5-54

IM DISTORSION AT THE OUTPUT

The 3rd order intercept point (PI3) in relation to the input is
given by (5.119), and repeated here:

(5.134)

The PI3 in relation to the output is obtained simply from (5.134)
by adding the gain (in dB):

(5.135)

Let Lout be the output level corresponding to  and Dout the
distortion level at the output corresponding to an input level .

 is by definition equal to the difference between the output
signal level (in dBm) and the corresponding level of the 3rd order
IM component (cf Fig. 5-31):

(5.136)
In addition: (5.137)

By plugging the equations (5.136) and (5.137) into (5.135), we get:
(5.138)

If we express OIP not in dBm but directly in Watts we get:

(5.139)

The PI3 (in Watts) can thus be calculated from the measure-
ment of the signal power Pout and from the IM distorsion at the
output Dout. Knowing OIP (in Watts), we can also express the
distorsion at the output corresponding to a certain power Pout:

(5.140)
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IM DISTORSION AND THE CORRELATION COEFFICIENT 

Fig. 5-33 shows a nonlinear amplifier, subject to a two-tone sig-
nal such as that described by (5.89), and producing IM products
at its output. The power of the useful signal (in the passband of
the system) is Pin and the power of the possible IM products
falling in the passband and already existing at the input is Din.

The IM distortion at the amplifier output is equal to the distor-
tion produced by the amplifier Damp, plus the distorsion already
present at the input multiplied by the gain G and an additive
term  taking into account the correlation exist-
ing between the distortion already existing at the input and the
distortion generated by the amplifier itself. For the case in
which the correlation coefficient C is zero, we have:

(5.141)

The two distortion terms add up in power (like independent noise
sources). If they are perfectly correlated ( ), we get:

(5.142)

The two distortion components thus add up in voltage (or in cur-
rent). 

Fig 5-33: Input and output power of an amplifier subject to a 
two-tone test.
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3rd ORDER INTERCEPT POINT FOR AN AMPLIFIER 
CASCADE (1/2)

Consider the cascade connection of two amplifiers characterized
by their gains in power Gi and their 3rd order intercept points
OIPi ( ). If  we get:

(5.143)
From (5.139), the PI3 corresponding to the cascade connection
of two amplifiers is:

(5.144)

But from (5.140), we get:

(5.145)

and so:
(5.146)

where  corresponds to the PI3 of the first amplifier, in
relation to the output of the second amplifier. The 3rd order
intercept points combine like parallel resistances (for the case in
which ).

Fig 5-34: Two cascaded amplifiers subject to a two-tone input 
signal.
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3rd ORDER INTERCEPT POINT FOR AN AMPLIFIER 
CASCADE (2/2)

If , Eqn. 5.141 gives:

(5.147)

and then after (5.139):

(5.148)

Plugging in Damp1 and Damp2 with the help of (5.145), we get:

(5.149)

or brought back to the input:

(5.150)

The denominator of (5.149) being smaller than that of (5.146),
the PI3 for  is greater than that obtained for .
The real intercept point is usually between two extremes:

(5.151)
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nth ORDER INTERCEPT POINT FOR AN AMPLIFIER 
CASCADE

We can generalize (5.150) for the calculation of an nth order
intercept point for a chain of amplifiers:

(5.152)

where  and IIP (expressed in W) corresponds to the nth

order intercept point brought back to the cascade input.
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