CHAPTER 5

NOISE AND DISTORSION



NOISE AND SIGNAL-TO-NOISE RATIO

Noise can be generally defined as any undesireable signal that
masks or degrades the useful signal. This definition includes
deterministic noise, due to coupling with the clock signal for
example, and random noise whose origin is the fluctuation of a
physical quantity such as voltage or current.

Deterministic noise can usually be drastically reduced or even
eliminated by techniques such as shielding, filtering, or others.
By its nature, random noise cannot be predicted and therefore
cannot be eliminated. It can only be manipulated and reduced by
techniques such as filtering.

We will use the term noise uniquely for random noise.

Noise is important because it represents the resolution limit for
many systems.

Noise, being a random signal, is described by its statistical prop-
erties such as its amplitude probability distribution at a certain
instant. In most cases it is not actually necessary to know the
probability density, but only the first- and second-order
moments corresponding to the average and the variance.

In many cases, noise can be considered stationary.

The noise of a circuit or system must always be compared to the
signal that carries the useful information. We therefore intro-
duce the notion of Signal-to-Noise Ratio (SNR) which is the
ratio between the signal power and the noise power:

Average signal power _ Psignal
Average noise power Py

SNR = (5.1)
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5-3
SPECTRAL NOISE FACTOR

The spectral noise factor of a two-port network as shown in
Fig. 5-1 is defined as the ratio of the Power Spectral Density
(PSD) of the maximum output noise, N,, and the PSD of the noise
due to the source resistance connected to the two-port network
input, N;, measured at a temperature of 290 K:

PSD of total noise at output _ Ny (5 2)
PSD at output due to source resistance Rg  G(f) - N; |

F(f) =
where G(f) represents the gain in power of the two-port network
and V; is the PSD of the noise at the input of the two-port net-
work due to the source.

Si SO . .
: S; = PSD of signal at input
noise N; = PSD of noise at input
G S, = PSD of signal at output
© °  N,=PSD of noise at output
N; N,

Fig 5-1:  Two-port network with noise, and noise factor.
The contribution of basic noise at the output of the two-port
network is thus given by:

N,-GN; = FGN,-GN, = (F-1)GN, (5.3)

This basic contribution can be shifted to the two-port network
input as a PSD N, by dividing (5.3) by the gain G:
N, = (F-1)N, (5.4)

where F—1 is the excess noise factor. The noise factor can
then be written as:

F=1 N—p 1 5.5
e —+ .
N (53)

i

The noise factor is thus always greater than one.
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NOISE FIGURE AND AVERAGE NOISE FACTOR
We define the noise figure NF by:
NF = 10log(F) > 0dB (5.6)

The minimum (ideal) value of F being equal to 1, the minimum
noise figure is equal to O dB. According to the definition given by
(5.2), the noise factor is a function of frequency. It is generally
defined for a set frequency. We can also define an average noise
factor which takes into account the bandwidth B of a system:

j N df j FNG(N df jF(f) G(f)df
F B B B

- - (5.7)
_[G(/)Nl.df I G()Ndf J' G(Hdf
B B B

which reduces to the average value of F when the gain is con-
stant in the bandwidth B:

_
F—Epm# (5.8)
B

for G(f) = G, = const. inthe bandwidth B.
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NOISE FACTOR AND SIGNAL-TO-NOISE RATIO

The noise factor can also be defined as a function of the signal-
to-noise ratio (SNR) at the input SNR; and at the output SNR,:

f S.df f G(NS,df
PSi B PSo B
SNR;=— = and: SNR = = (5.9)
Ni jNidf No J.Nodf
B B

Egn. 5.7 can be rewritten:

J' G(NSdf
—  Pnp 1 Pg, 1 3
F= - - (5.10)
j G()N df SNR, j G()N df SNR, j G()Ndf
B B B

which for constant gain simplifies to:

S.df
_ 1 3 SNR;
F = = 5.11
SNR, SNR, SR
N.df
8

The noise factor can thus be equivalently defined as the quotient
of the signal-fo-noise ratio at the input and the signal-to-noise
ratio at the output. It is therefore a measure of the degrada-
tion of the signal-to-noise ratio at the output due to the basic
noise generated by the two-port network.
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NOISE TEMPERATURE

The power available from a source impedance Zg corresponds to
the maximum power that it can deliver o a load impedance Z;.
We know that this situation is achieved when the load impedance
is equal to the complex conjugate of the source impedance:

Z, = Z*g (5.12)

In these conditions, the maximum power available from a source
impedance Ry is given by:

2

_ s

4R

where Vg is the RMS source voltage. From this, we can deduce
the power available from a source of thermal noise:

4kTRB
Py, =

Py (5.13)

= kTB (5.14)

We remark that this available thermal noise power is independ-
ent of the value of the source resistance. Thus, kTB is the max-
imum power available from any source that has an impedance
with a resistive term. We also define the PSD available from a
source in the bandwidth B as:

N, = kT (= 4x10 ") (5.15)

Note that this PSD is independent of the resistance value. The
nhoise factor can then be expressed by:

F=1 N 5.16

= + — .
T (5.16)

where T is the reference temperature (usually room tempera-

ture) and N, the contribution of the two-port network.
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NOISE TEMPERATURE

5-7

The noise factor is usually between 1 and 10. In certain cases, a
larger scale is necessary. We use instead of the noise factor,
the noise temperature 7,., defined by:

F=1 !
=]+ —
T
From which: T . =(F-1)T =N,k
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NOISE FACTOR OF CASCADING TWO-PORT
NETWORKS

Consider the cascade connection of two 2-port networks, each
characterized by its power gain and noise factor (cf Fig. 5-2).

o— ——O
G, F, G,, F,
o— ——O

Fig 5-2:  Noise factor of cascading two-port networks.
The global noise factor F'is defined by:
Ny Ny
GN, G,G,N,
The noise at the output of the first two-port network is equal to
the noise at the input N; multiplied by the gain in power G; plus
the contribution of the first fwo-port network at the output
(F;—1)GN;:

N, = G\N;+(F;-1)G\N; = F|G N, (5.20)

F = (5.19)

The noise at the output of the second two-port network is equal
to the noise at the input N, multiplied by the gain in power G,
plus the contribution of the second two-port network at the out-
put (£, —1)G,N;:

N3 = GyN,+(Fy—1)G,N; = G,F G N, +(F,—1)G,N, (5.21)

F hich: I’ = F a2~ DO, F B 5.22
ich: F = F, + = F, + :

rom whic 1 G,G /N, 1 G, (5.22)

For the case in which G,>>(F,—-1), F=F, and the global
noise factor is essentially determined by the first stage of the
cascade. Eqn. 5.22 can be easily generalized for the case of n
two-port networks in cascade (Friis Formula):

F=F + + + ...+
G, 6,6, G,G,...G, |

(5.23)
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SENSITIVITY AND MINIMUM DETECTABLE SIGNAL

The power of the input signal Pg; corresponding to a given signal-
to-noise ratio at the output SNR,, is called the sensitivity of the
system. The level (in dBm) corresponding to Pg; is called the min-
imum detectable signal (MDS).

(€[]
A
Gy -

>/
J1 S

Fig 5-3:  Gain in power of an ideal system.

For a system whose gain is constant in a frequency bandwidth B
and zero beyond this band (cf Fig. 5-3), the average noise factor
is given by:

[ewsar  Gy[sar
1 B B

F= 53k

P,
- - o (5.24)
°[GOINAf  SNR,G,[N,df SNR TS

B B

From this we get the signal power for a given signal-to-noise
ratio at the output SNR, and a given average noise factor:

Py, = F -kTB-SNR, (5.25)

or in ferms of the input signal level in dBm:

L . =10l (PSi)=]WE’+101 (kTB)+(SNR) [@Bm] | (5.26)
min = 10108 Ty ¢ Tp) T SNRy)gg 1Bm] | (5.
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EQUIVALENT NOISE SOURCES

A two-port network with noise can be modeled by the same two-
port network without internal noise sources, and two noise
sources Vy and I, independent of the values of the source
resistance Rg and the load resistance R; (cf Fig. 5-4).

o
R | noisy l VNout
B

Vn
~ (D o
-
RS IN noiseless l VNom
C O

Fig 5-4:  Noisy two-port network and its noiseless model, with

equivalent noise sources at the input.
Note that the two noise sources are necessary in order to have a

complete description of the ftwo-port network noise for all
source resistance values. In fact, when Ry = 0, the noise at the
output Vy,,, is due only to the noise source Vy, while if R¢— o,
it is due to the current noise source Ij. Since each of these
sources considers the effects of the same physical causes of
noise, internal to the two-port network, they are usually not
independent. But in most cases, the correlation between V and
Iy is weak and can be neglected.
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CALCULATION OF EQUIVALENT NOISE SOURCES (1/2)
Voltage amplifier

The PSD Sy, of the source V) of a voltage amplifier is calcu-
lated by evaluating the PSD of the output noise voltage of the
two-port network when the input is short-circuited, and dividing
it by the square of the voltage gain A, (cf Fig. 5-5 a). The PSD
Sy of the source Iy is obtained by evaluating the PSD of the
output noise voltage of the two-port network when the input is
an open circuit, and dividing it by the square of the transimped-
ance Z,, (cf Fig. 5-5 b).

[ —O
noisy l VNom VN @ noiseless
—O

_ SVNout VNout
4,00 Y

VNout

O<+—O

SVN

a) Source of noise voltage.

o 0
noisy l VNout Iy é noiseless

o—] 0

S

_ VNout VNout
IN m
|Zm(f)‘2 Iy

VNout

O<+—O

b) Source of noise current.
Fig 5-5:  Calculation of PSD of equivalent noise sources of a
voltage amplifier.
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CALCULATION OF EQUIVALENT NOISE SOURCES (2/2)
Transconductance amplifier

The PSD Sy of the source V) of a transconductance amplifier
is calculated by evaluating the PSD of the output noise current
of the two-port network when the input is short-circuited, and
dividing it by the square of the ftransadmittance Y,, (cf Fig. 5-
5 a). The PSD Sp of the source Iy is obtained by evaluating the
PSD of the output noise current of the two-port network when
the input is an open circuit, and dividing by the square of the
current gain 4; (cf Fig. 5-5 b).

} noisy IIMM Vy { noiseless I Inout

g _ SINout Y = INout
VN -
¥, "V

O_
noisy IIMM Iy { noiseless I Inout
O_

b) Source of noise current.
Fig 5-6:  Calculation of PSD of equivalent noise sources of a
transconductance amplifier.
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EQUIVALENT NOISE VOLTAGE SOURCE FOR THE
BIPOLAR TRANSISTOR

The equivalent noise sources for the bipolar ftransistor can be
calculated from the small-signal model shown in Fig. 5-7.

]AF

+ 8pe CBE_|_ é gce[h [NC¢ ]INOW‘

Fig 5-7:  Small-signal model of the bipolar transistor, including
the noise sources.

By considering that g..<<g, and g,.r,,<<l, the low-fre-

quency noise current when the input is short-circuited is given

by:

Ivouws = Inc T 8nAVBE = Inc—&mVNB (5.27)
The PSD of the current Iy, is thus:
Sivout = Sive t EmSyns (5.28)

from which we find the PSD of the source Vy:

SiNout _ SINC 2q1¢
Syn = 2 g2 T Synp = g_2+4kTrbb'
L L " (5.29)
m
with: Ry=r,, +— (5.30)
N bb ng :
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EQUIVALENT NOISE CURRENT SOURCE FOR THE
BIPOLAR TRANSISTOR

The noise current when the input is an open circuit is:

Iygur = Iyt 2 NB g By (5.31)
gpe TIOCpE

Since the current gain is equal o B(j®), the PSD of the source
IN iS:

]A F

S /

Sy = Sppt —2e =2 < N 5.32
IV " SINE T (R o1y Iﬁ(ico)lz) " (5:32)
The current gain as a function of the frequency is given by:
__ Pr
BK) = 73,0777 (5.33)

J JAF
50 Sy = 2q(13 - é(l - B%(%)Z)) +K, BT = (5.34)

ZqIC(%: + (%) 2) + K, PETF

The PSD of the source Iy as a function of the frequency is
shown in Fig. 5-8.

A?/Hz

3x 1072

3x 10-%

3x 1072

3x 10~

f+=50 MHz

Fig 5-8:  PSD of the equivalent noise current source Iy .
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EQUIVALENT NOISE SOURCE OF AN AMPLIFIER
CONNECTED TO A SOURCE

Amplifier noise associated with a voltage source can be modeled
by a single noise source Vy,, (cf Fig. 5-9), including the noise
from the source resistance 4/?TRS and the noise from the ampli-
fication device.

out

@)
I

N
()
_iN_‘
o
S
<+—
—
N.N
S
‘N
<
o
> +
-—
AN
N
O«——0O
~

+

VSKE: .Vmi [hz WAL IV

Fig 5-9:  Noisy amplifier and equivalent noise sources.
The PSD of the output noise is given by:

2
Siv

2

Z.
n 4kTR¢

Zin +RS

RSZin
Zin + RS

in

Zin +RS

SVNout - ‘Av(f)|2

N T

contribution of the amplifier contribution of the source

(5.35)

The voltage gain between the source and the output being equal
to (z,/(Z, +RNA(f) , the PSD of the equivalent noise voltage

source at the input is thus given by:

SyNeq = 4kTRg+ Syy+ R3Sy (5.36)

This PSD is independent of the parameters Z;, and 4, of the
amplifier, but depends on the source resistance Ry .
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NOISE FACTOR OF AN AMPLIFIER AND OPTIMUM
SOURCE RESISTANCE

The spectral noise factor of the amplifier in Fig. 5-9 is simply
given by the ratio between Syy,, and the contribution of the
source 4kTRg

S S S
INeg _ 4 TN IV (5.37)

"~ kTR, 4kTRy 4kT(1/Ry)

This noise factor is independent of the amplifier parameters Z;,
and 4,. In addition, it has a minimum for a value Rg,,; of the
source resistance:

S
_ [°WN
Rsopt = m (5.38)
The corresponding minimum noise factor is thus:
Syn - Sin
Fop = 1+ 7 (5.39)

The noise figure corresponding to (5.37) is represented as a
function of Ry in Fig. 5-10.

NF

NF oy

RSopt

Fig 5-10: Noise figure corresponding to (5.37).
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OPTIMUM SOURCE RESISTANCE OF BIPOLAR AND
MOS TRANSISTORS

The optimum source resistance and the mimimum noise factor
for a bipolar transistor (neglecting the 1/f noise, that is by set-
ting K, = 0), are calculated from:

Syn = 4kT(rbb.+ ——1—) Siv = 2qlp (5.40)
ng

We find:

J1+28, by JU 28, b
Rg,p = Br - F . =1+ 222 (5.41)

gm opt m

From (5.41) we deduce that a low-noise bipolar transistor must
have a small base resistance r;;,- and a large current gain .
The optimum source resistance and the minimum noise factor for
a MOS transistor (without 1/f noise) are calculated from the
PSD of the equivalent noise sources at the input:

Syy = 4kTL 8,20 (5.42)
Em
from which: Rgopt = ® Fop =1 (5.43)

The MOS ftransistor is thus well matched for large source
resistances.

In practice, for source resistances higher than 1 MQ, the MOS
transistor offers a noise factor for white noise that is smaller
than that of the bipolar (for the same transconductance). But
the noise factor can be deteriorated by the presence of 1/f
noise, which is generally higher in a MOS transistor.
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IMPEDANCE MATCHING FOR MINIMUM NOISE

If the source resistance Ry is fixed, it is useless to try to obtain
the condition Rg¢ = R . by adding series or parallel resistors.
In fact, they would only worsen the noise of the system. We can,
however, obtain the mimimum noise factor by using an (ideal)
transformer of ratio n as indicated in Fig. 5-11.

ideal transformer

Ry
Ry 4kT Rg h Syn
VSl > %H SIN Vout
2 noiseless
SVN/ n

Ry 4kTRg e amplifier

TR T 355

out

nzS]N

Fig 5-11:  Source impedance matching for a mimimum noise fac-
tor.

The PSD of the equivalent noise at the input is then given by:

S
= 4kTRg+—5 +n? - R3Sy (5.44)

n

SVNeq

This PSD is minimum for a transformation ratio n,,,, :

R
) Sopt
ngpt = R_S = _290P0 — / (5.45)

_ VN~IN
SyNeg = 4KTRg+2Rg, [Sy\S)y = 4kTR( W} = 4kTRg-F,

(5.46)
This optimum ratio also gives the mimimum noise factor.
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IMPEDANCE MATCHING BY AUTOTRANSFORMER

The impedance level of narrowband circuits can be modified with
an autotransformer as indicated in Fig. 5-12.

L=1L +Ly+2M

a) b)
Fig 5-12: Changing the impedance level by using an autotrans-
former.

For perfect coupling, the coupling factor k= 1. The diagram in
Fig. 5-12 a) can then be replaced by that of Fig. 5-12 b), which
shows that the source impedance is multiplied by the square of
the transformation ratio n.

L
n = A/L:z (5.47)

The impedance as seen from the secondary is therefore:

2. (L

The noise can thus be minimized by choosing n according to
(5.45).
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IMPEDANCE MATCHING BY CAPACITIVE DIVIDER

For the case in which the input impedance of the amplifier stage
is inductive, the source impedance level can be changed by using
the circuit shown in Fig. 5-13 if © » (RsC,) ™.

C, 0 = —
RSZRS{1+6J JLC
O O - o
—C;
! t3 R [] T7¢ ¢ 3 R[]
Rqﬁ_::c2
T o T o -——l—ﬂ}—
c.C
€= C11+(%’2
a) b) c)
Fig 5-13: Changing the impedance level with a capacitive
divider.

For frequencies oa>>(RSC2)—1, the resistance seer2\ by the
inductance equals the source resistance multiplied by n™:

' 2 C2 2

The noise can thus be minimized by choosing n according to
(5.45).
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TOTAL EQUIVALENT INPUT NOISE FOR A RESISTIVE
SOURCE

As indicated in Fig. 5-14, the block made up of an amplifier, of
which the noise is modeled by two noise sources Sy and Sy, and
an impedance source Ry, can be modeled by a single noise voltage
source in series with the source Vg with PSD Sy,

SyNeq = 4kTRg+ Syn+ RS- Spy (5.50)

RS 4kT RS SVN RS SVNeq

—
Siv # :[>_o V.. Vs l

O
J

Fig 5-14: Total equivalent noise source at the input.

Notice that this PSD is minimum when R¢— 0 and not for
Rg = R,,,, value for which the contribution of Syy is equal to
that of S]N:

SVNeq‘RSZRSOPt = 4kTRS0pt+ 2 ° SVN (5.51)

Eqn. 5.50 is graphed as a function of the source resistance Rg in
Fig. 5-15.

S VNeq
(log) b
2
S R$Sin
VNeq

kTR

Syn

R
> _ 5 (log)
1 Sopt

Fig 5-15:  Syp,q as a function of Ry .
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5-22
VOLTAGE AMPLIFIER WITH RESISTIVE SOURCE (1/4)

Equivalent circuit

Consider the voltage amplifier presented in Fig. 5-16.

4kTRS SVNa+ . S]Na+

.||_.

b)
Fig 5-16: Voltage amplifier and equivalent noise model.
Ignoring the correlations that exist between Syy,+ and Spy,+

(Syng— and Syy,_), the PSD of the equivalent noise voltage at the
input is given by:

SvNeq = 4T(Rg+ R 1))+ Syngs T Syna-+ R5Sivar + R Sina-

(5.52)

with: R, = R, IR, (5.53)
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VOLTAGE AMPLIFIER WITH RESISTIVE SOURCE (2/4)
Bipolar input stage

For the case in which the input stage of the amplifier is realized
with bipolar transistors, the PSD Sy,+ and SiNg+ are given by
the equations (5.29) and (5.34). Ignorlng the 1/f noise (K =0),
we find the PSD SVNeq

U
_ r 2+ R2, f
(5.54)

Up
— 2 4
- 4kT[RS+R +2rbb+—c+(R + R} 3y UJ

for f<<frand Br>> I. Notice that Syy,, has a minimum for one
particular value of the polarization current I¢,

/ 2Br / 2B 5
1 = [——- U g = | (5.55)
Copt T mopt
op R§+R%2 op R§+R%2

The mimimum value of the PSD Sy, is thus given by:

R%+R?,
=4kT |Rc+R 5 +2r, ;0 +2 |———— = 4kT-R
SVNeqopt k S 12 "bb ZBF k Negq (556)

=R

Neq
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VOLTAGE AMPLIFIER WITH RESISTIVE SOURCE (3/4)

Optimum polarization current

The equivalent noise resistance Ry, normalized to the source
resistance Rg is graphed in Fig. 5-17 as a function of the polari-
zation current for a bipolar transistor. For rp;,- = Rg=R; = 50 £2
and B = 200, we find I, = 7.35 mA.

gn1FRS

1 10 100 1000
12 T IIIIIII T 1 IIIIIII

T=300°K
Rs=50K|
R1 = 50&

R, =5 kX
o' = S0 X|-
bg =200

0.1

Fig 5-17: Optimum polarization current.
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VOLTAGE AMPLIFIER WITH RESISTIVE SOURCE (4/4)
MOS input stage
For the case in which the input transistors are MOS transistors,

we have:

_ _ a2 K
SyNa+ = Syna- = 4T 2 WLp
m

SiNa+ = SiNa- = (@Cin)zSVNa+

(5.57)

The equivalent PSD of the input noise is thus given by:

K
SyNeq = 4kT{RS+R12 + [gl + W_I{f}[z + (‘”Cin)z(R% +R%2)]} (5.58)

which simplifies at low frequency (o<<1/(C,, [R5+ R},) ) to:
v, &

In this case, there is no optimum as a function of polarization.
The noise contribution of the MOS transistors can be made neg-
ligible compared to the noise term due fo the resistances, by
reducing Syp,+ and Syy,_. This is achieved by increasing the
transconductance and the gate area WL of the MOS transistor.
The frequency for which the white noise is equal to the 1/f noise
(the corner frequency) is given by:

Je = o (5.60)
WL(RS‘l‘ Ry + _)

m
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HARMONIC DISTORSION
Single tone input signal

Although components such as amplifiers and transistors are
often considered as linear elements, they have nonlinear trans-
fer characteristics. Fig. 5-18 shows the typical transfer charac-
teristic of an amplifier. It is made up of a linear portion and two
saturation zones. We apply a sinusoidal input signal:

x(r) = X cos(wf) or x(¢p) = X cos(9) (5.61)

with ¢ = wyz. As long as the signal amplitude is less than X,
the output signal is likewise sinusoidal with the same frequency.
When X; > X, .., the output signal will be subject to distortion.
It then contains frequency components which are multiples of o
or harmonics. The harmonic components will depend on the input
amplitude, the maximum amplitude X, ., and the nonlinear char-
acteristics.

\K< Signal d'entrée
2+

wyl = d)

Fig 5-18: Transfer characteristic of an amplifier.
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FOURIER SERIES OF THE OUTPUT SIGNAL

The output signal y(?), remaining periodic, can be broken down
into a Fourier series:

+00 +00

() = -C-;Q+ Z a,cos(nd)+b, sin(nh) = %9+ Z r,cos(nd—a, ) (5.62)
n=1 n=1

The coefficients a,, b,, r, and a,, are given by:

ay== [ @) cos(no)dd  and: b= [ y@)sin(np)do 5.63)

—TC —

- 42 2 . —
r, = a;+tb: and. a, = atan(b, /a )

In the case of the saturation characteristic of Fig. 5-18, we
remark that the average value of the output signal is zero and
thus a) = 0. In addition, the output signal y(¢) shown in Fig. 5-18
being an even function of ¢, the coefficients b, are all zero.
Since the transfer characteristic is odd, the output only con-
tains odd harmonics. It can be shown that the coefficient corre-
sponding to the fundamental is given by:

a; =k -X;-f(&) with: E=X,/X, . (5.64)
z[asin(l/ﬁ)Jr——————W} s 1

where:  f&) =17 5 (5.65)
1 £<1

When X; < X,, ., the system is linear, and therefore there are no

harmonics. In this case the output signal is simply given by
W9) = ky-x(¢) = ky-X,cos(¢) and so a; = k;-X; which
corresponds to fl§) = 1.

The amplitude of the harmonics greater than 1 is given by:

_ kX sin((n+1)¢)_Sin((n—1)¢)} form =3,57,... (5.66)

n nm [ n+1 n—1
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COMPRESSION

The function f(&) given by (5.65) and permitting the calculation
of the amplitude of the fundamental is shown in Fig. 5-19 as a
function of &. This figure shows that the amplitude of the output
signal fundamental decreases as a function of the input signal
amplitude. This phenomenon is called compression.

f(x)

0.0 ] ] ] ] ] ] ] ] ]
X = X-I / Xmax

Fig 5-19: Function f(§) given by (5.65) as a function of &,

The compression rate (CR) is defined as the ratio between the
amplitude of the fundamental output signal of the nonlinear sys-
tem and the amplitude of the fundamental output signal of an
ideal linear system:

_ fundamental amplitude
~ linear system fundamental amplitude

-100% (5.67)

For the characteristic in Fig. 5-18, the compression rate is:
a k. X, -f(€)
(3 (5.68)

) lel R lel
It is generally expressed in dB. It is common to refer to the
amplitude corresponding to a compression rate of -1 dB.

CR
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APPROXIMATION OF HARMONIC AMPLITUDE

We can estimate the amplitude of the harmonics at the output
of a nonlinear memoryless system excited by a sinusoidal signal,
by expanding the nonlinear characteristic with a Taylor series:

y = ko thkxthx?+igxd+ ... (5.69)

By introducing the sinusoidal signal (5.61) and developing, we
obtain:

y = Yyt Y cos(¢)+Y,co8(2¢)+ Yycos(39) + ... (5.70)
Y, = kg+ 2k, X2+ Y, = k X+ k3 +
0 0 2 2 L) 1 1 4 3 LREY
with: (5.71)
v, = Liox2+ Y, = Lkx3
For a perfectly linear system  without  offset
(k; =0 Vi+# 1) the output signal is sinusoidal and its ampli-

tude Y; simply reduces to kX. The factor k; then corresponds
Yo the gain of the linear system. For a nonlinear system, the out-
put signal is no longer sinusoidal (but is still periodic with the
same period as the input signal). The amplitude of the fundamen-
tal ¥; is modified by the cubic term (3/4)k;X> and can thus be
either larger or smaller than that obtained when considering the
system to be linear. For a nonlinear system dominated by the
cubic term, we then refer to an expansion characteristic when
ks >0 and a compression characteristic when k5 <0.
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COMPRESSION POINT AT -1 dB

Y1 (log) expansion 3 3
A characteristic |kl‘XjL Z|k3|X

linear
characteristic |k1|X

i 3
characteristic  [¥11% 73X

p X (log)

Fig 5-20: Expansion or compression point at £1 dB.

The compression point at -1 dB(or expansion point at +1 dB) cor-
responds to the amplitude X_; 5 (or X, ;,5) for which the funda-
mental is 1dB from the value obtained when considering the
system as perfectly linear (cf Fig. 5-20). These amplitudes are
given respectively by:

(5.72)
a ~1/20, |k, _ |4,,01/20 ky
X 45 = [3(1-10 )| — Xigp = [3(10 —-1)|=
3 ks
or expressed in dB:
20log(X ;) = IOIOg( lﬁ) —8.386 [dB]
: (5.73)

ky

3

20log(X, 45) = 101og( )—7.886 [dB]
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HARMONIC DISTORTION INTERCEPT (HDI)

Yi (log) A

- X (log)

X.1a8  X+1aB XHDI
Fig 5-21: Harmonic distortion intercept.

Fig. 5-21 shows the harmonic components Y; and Y3 as a function
of the input signal amplitude X in a log-log graph for the case in
which the nonlinearity is dominated by the cubic term. The com-
gression of the fundamental is thus mainly due to the cubic term

ILE |X3 and the compression of the third harmonic is negligible.
No’rlce that the amplitude of the 3™ harmonic increases three
times as quickly as that of the fundamental (in a log-log dia-
gram). The amplitude Xyp; (HDI=Harmonic Distortion Inter-
cept) corresponding to the intersection point between the
fundamental when considering the system to be linear, and the
3" harmonic (without compression) is given by:

1
k1 Xpapr = 3k Xupr= Xupr = 2+ /Ky (5.74)

or as: 20log(Xypy) = 10log(|k;/k;|) +6 dB (5.75)

The compression point at -1dB is located 14.41 dB below the
intfersection point:

AX = 20log Xy /X_1gg) = ~10l0g(21-107%%) = 144148 (5.76)
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EXAMPLE 1: EXPONENTIAL CHARACTERISTIC (1/2)

For the exponential characteristic of a bipolar transistor, the
collector current for a base-emitter control voltage
Vpolh) = VBEq + AV - cos(myt) is given by:

VBEq t AV g - cos(oy?)
UT

i) =1- exp{ } = I, exp[X - cos(o)] (5.77)
where Iqsls- exp[VBEq/UT] is the bias current defined for
AVgr = 0 and X=AVy,/U,. We can thus normalize the cur-
rent i () to I,

1.(2)
y(t) = - = exp[X - cos(wy?)] (5.78)

It can be shown that the Fourier series development of the
function (5.78) is given by:

+00

y(t) = exp[X - cos(wyt)] = [(X)+2- Z I (X) - cos(nmt) (5.79)

n=1

where [,(X) is the modified Bessel function of order 0 and
I (X) is the modified Bessel function of order n. For an expo-
nential function, it is thus possible to calculate the harmonics Y,
exactly. But unfortunately, this is not always possible. So we can
compare the harmonics calculated exactly by (5.79) to those
obtained by expanding the normalized exponential characteristic
¥(¢) in a Taylor series:

I (¢ 2 3
W(t) = S U SO (5.80)
I, 2 6

where x(f) =X - cos(m1?).
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EXAMPLE 1: EXPONENTIAL CHARACTERISTIC (2/2)

From (5.80) we get the coefficients k;, = 1 and k; = 1/6 and
the expansion point at +1 dB:

20log(X, 45) = —0.1 dB (5.81)

and the intersection point of the harmonics:

20log(X,,,) = 13.8 dB (5.82)

The expansion point at +1 dB and the intersection point of the
harmonic components are represented in Fig. 5-22. Notice that
the approximation of the compression by using the expansion
(5.80) is very close to the exact characteristic. In addition, we
see that the third harmonic is subject to expansion and moves
away from the right.

LBE [dBm]
-25 -20 -15 -10
15 1 | 1 1 :I 1 | 1 1 1 1 I 1 ,} 1 1 ',1
— : Yi— /A :
m ' 7 1
o 10F- [ / -
ey i :
(O ; L
2 T : ] :
& : kq-X+3/4-k3-X !
(_U | R \ S 1
£ 0 1dB] | ky-X . 1
j- 1 d 1
) . 7 174k X3
[ ! Y3 K 1
-5 | - i
o0 1 1
> . f :
- 1 K 1
q‘-)_ _10 | :4 l:' 13.9 dB >:
> | i
1 ',' 1
Ll i1 | :
_'I 5 L L L L | 1 L 1 1 1 L 1 1 1 1
5 fo 5 10 $ 15
X X

2010g{BVgg / Up) = 20log(X) [dB] '

Fig 5-22: Expansion point at 1 dB and intersection of harmonic
components for an exponential.
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EXAMPLE 2: THE DIFFERENTIAL PAIR (1/2)

The differential current of a bipolar differential pair is simply
given by:

Al . Vin
=— = h = .
y ]q tanh(x) with X 20, (5.83)

where V;,, is the differential input voltage and 7, half of the tail
current (or the bias current of each of the transistors when
V., = 0). Unlike the case of the exponential function, there is
no analytic expression for the Fourier series expansion of (5.83)
with x(f) = X - cos(wyt). This characteristic can nevertheless

be approximated with a Taylor series expansion:

3
y=tanh(x) = x —’-;- (5.84)

Notice that there is no even tferm. From (5.84) we get k; = 1
and k; = —1/3. This approximation is represented in Fig. 5-23
with the function tanh(x) as well as another approximation:

y = tanh(x) = x—0.254 - x3 (5.85)

We remark that the approximation (5.85) is better (error less
than 2% for |x| < 1) than that given by the Taylor expansion
(5.84) (error less than 2% for |x| < 0.59).

The amplitude of the fundamental calculated using approxima-
tions (5.84) and (5.85), along with the amplitude of the linear
system, are shown in Fig. 5-24. The compression point calculated
from (5.73) is given by -3.6 dB for (5.84) and -2.44 dB for
(5.85). The first and third harmonics intersect at the point
10.8 dB using the approximation (5.84).
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EXAMPLE 2: THE DIFFERENTIAL PAIR (2/2)

1.0 — 2.5
tanh(x)
0.8 |- L e 4 20
0.6 |- s 77U N s
oalt  yi=xxn A 1o 3
B m) | \ ; p— d -
- “/ ; \\\ I/I " ‘\‘ \‘ g
5 02F N o ' 05 .
8 0.0} : i r %Y 00 &
I vl = x-0.254-x \ ’ ' =z
>~ 02p % L v 4 v4-05 &
AN / / g ol \ )
-04 |- A \ " ,’ “— -1.0 =)
\‘ \\ ! ! \ O\O
06 N\ ! _A 415
N o7
. : erreur pour y; €rreurpouryj
-0.8 - l I (axe de doite) (axe de droite) | -2.0
1.0 | T i | | | 25
20 -15 -10 -05 00 05 10 15 20
Fig 5-23:  Tanh(x) and 3" d degree approximation.
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1 1
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g == 1dB ] o
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> 8h | :
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~ 3 = >
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Fig 5-24:
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20-log(Vjn / (2-U7)) [dB]

5-35

Compression point at —1 dB and intersection point of
harmonics 1 and 3 for a tanh characteristic.
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HARMONIC DISTORTION RATE

One measure of the distortion of a signal is given by the ratio
between the harmonic amplitude # (7,,) and the amplitude of the
fundamental r;, measured as a percentage:

r
Distorsion rate for the harmonique n = r_n - 100% (5.86)
1

The total harmonic distorsion rate (THD) is the ratio between
the RMS value of the harmonics n# 1 and the RMS value of the
distorted signal at the output for a sinusoidal input signal:

+0o0
)
IR
2. .2
_ rs+r
THD=11=2 ~ ~ N2 3 (5.87)
2472
IR
n=1

The THD can often be approximated by considering only the
first harmonics, because the amplitude of the harmonics gener-
ally decreases very quickly.
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INTERMODULATION
Sinusoidal “duo tone” input signal

Consider a nonlinear system with a static polynomial characteris-
tic:
y = k0+k1x+k2x2+k3x3+k4x4+ (5.88)

Let us consider the case of a signhal composed of fwo sinusoidal
waves:

x(#) = X cos(ow )+ X,cos(w,t) = X cos(d;)+X,cos(d,) (5.89)

where ¢, = .t (i = 1,2). The output signal is obtained by substi-
tuting (5.89) into (5.88). Let's look at the result term by term.
The linear term is given by:

kyx = kX cos(¢)+k X,co8(d,) (5.90)

The amplitudes of the sinusoidal waves are simply multiplied by
the gain k;. The quadratic term is given by:

kyx” = kyLX, c0s(6)) + X, cos(0,)]?

= ky[X}cos?(¢;) +2X X, cos(;)cos(d,) + X3 cos?(¢,)]

= constant term

I T

2 )
kyXT  ky X3
2 2

(5.91)

ko X7 ko X3
+Tcos(2(|)1) + 5 cos(2¢,) ¢ = second harmonics

roducts of second order
HhpXiXaleos(dy+4y)* cos(oy )1} = " interm]:)dulation
In addition to the constant term (at zero frequency) and second
harmonics, the signal contains two equal amplitude components
for which the frequencies are the sum and the difference of the
input signal frequencies. These components are called second
order intermodulation products (IM2). Thus, the nonlinearity
corresponding to the quadratic term generates second order
intermodulation products whose amplitudes depend linearly on X,
and X2.
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3" ORDER INTERMODULATION PRODUCTS

The cubic term is given by:

kyxd = kX cos() + Xpcos(9,)]
= ky [X{’ cos3(¢1)+ 3X%X2c052(¢1)cos(¢2) (5.92)

+3X1X§ cos(¢1)c0s2(¢2) +X§’ COS3(¢2)]

After expansion, we get:

3k, X3 3k, X3

kyx3 = - X1X2+ cos(¢y) + = X2X2 5 |c0s(§y) ¢ = fundamentals

k5 Xq kX3
+ 7 cos(3¢,) + 7 cos(3¢9,) ¢ = 3rd harmonics

(5.93)

3k XIX

+ [003(2(1)1 + ¢2) + 005(2(1)1 4)2)]
= 3rd order IM products

3k X\ X3

T [c0s(20; T 1)+ cos(2¢; —¢y)]

Eqn. 5.93 shows that the 3rd order nonlinearity produces funda-
mental components along with 3rd order harmonics. In addition,
we find 3rd order IM products at the frequencies 2f; + 15,
215 +f; ., 2f; —=f> and 2f; —f;. When the frequencies f; and f5 are
close, the components at frequencies 2f; —f5> and 2f, —f; become
particularly bothersome, because they fall into the useful trans-
mission band and are thus difficult to eliminate by selective fil-
tering.

The same approach can be used for nonlinearities of order
higher than 3. In general, an nth order nonlinearity produces
harmonics that are multiples of the frequencies f; and f5 up to n.
If n is even (odd), they are all even (odd) multiples of f; and f>.
If n is even, there is no fundamental, but there is a constant
term.
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INTERMODULATION PRODUCTS
In general, the intermodulation products generated by a nonline-

arity of order n are given by:
ik-fﬁl-f2 where: k+1=m with: m=2,3,...,n (5.94)
where the upper frequencies are obtained by taking the two plus

signs and the lower frequencies are obtained by taking opposite
signs such that the resulting frequencies remain positive. The

two minus signs are thus never used. Taking Af=|f, —f| ., cer-
tain odd-order IM products are given by:
n l'fz_k'fl k'fl_l'fz l'f2+k'f1 k'f1+l'f2
; 215 -1 2115 215+ 1, 21t /5
= fy+Af = f1-Af = 3f, - Af = 3f, + Af
S 3, -2, 3/, -2/, 3f, +2f; 3, +2f,
= f,+ 240 = f1-20f | =5f,-20f | =5fF20f
: af, - 3f, af, - 3f, 4f, +3f, Af,+3f,
= fo+3Af = f-3AF | = f,-3A | = Tf] T35

The IM product components closest to the fundamental fre-
quencies f; and f, are presented in Fig. 5-25.

A 4
Af
IM3 M > IM3
IM5 I I IM5
IM7 IM7
t 1 ] I
f1-28f A /> Jr 241

1341 f1-4&f Sy T Af Sy T 34Af

Fig 5-25:  Odd IM products around f; and f5
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DESENSITIZATION AND BLOCKING (1/2)

A desired input signal X;cos(¢;) added to an interfering signal
X,cos(9,) is applied to a nonlinear system with the character-
istic shown in Fig. 5-26 and described by:

. 3 = 3
k1 x+k3 X 12x —x ] <2
V= (5.95)
+16 x| >2
y
A
16
] /
- X

2

-16

Fig 5-26: Odd nonlinear characteristic.
The output signal y; at the frequency f; for an input signal ampli-
tude less than 2 (no saturation), is given by:
xP X7
Yy = 12X1(1 BT ?j cos(¢,) = 12X1(1 — E] cos(p,) for X,<<X,
(5.96)
The compression rate for the case in which the amplitude of the
interfering signal is much weaker than the amplitude of the
desired signal is given by:
X
CR,p = 2010g(1 — E) (5.97)

The amplitude corresponding to a compression rate of -1 dB is
thus 1.32 V, which is in agreement with the hypothesis that
X, <2V. For small amplitudes X, the system functions as a lin-
ear amplifier.
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DESENSITIZATION AND BLOCKING (2/2)

Let us consider the case in which the amplitude of the useful
signal is small (for example X; < 0.4V') and the interfering signal
becomes dominant, so:

XZ
Y1 = 12X1(1——g%)008(¢1) X, X, <2 (5.98)

We notice that the effect of the interfering signal is to reduce
the amplitude of the useful signal at the output. This phenome-
non, called desensitization, is similar to compression, but is
caused by a strong interfering signal at a different frequency.
We define a desensitization ratio by:

|desired output signal in the presence of interfering signall (5 99)

DS =
|desired output signal without interfering signal|

In our case we have:

2

DS, = ZOlog(l—)—(é%) X,<2 (5.100)
For X; <04V and X, =1.6V, we have DSz =-3.35dB. We
thus speak of a desensitization of about 3 dB that represents a
reduction of the useful signal amplitude by a factor /2 and thus
a reduction of the power by a factor of two.
In an extreme case, a large enough interfering signal can even
cancel out the amplitude of the desired signal. This phenomenon
is called blocking. In our case, the amplitude X, provoking the
cancellation of the useful signal is given by 1-X3/8 = 0, corre-
sponding to X, = 2.83 V. This amplitude is larger than 2 V and
therefore does not satisfy the hypotheses. Nevertheless, we
can imagine a system with a useful signal that is cancelled out
entirely by an interfering signal at another frequency.
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THIRD-ORDER INTERCEPT POINT (IP3) (1/2)

Consider the case in which the amplitude of the interfering sig-
nal is equal to the amplitfude of the desired signal
(X; =X, =V,,). The average power of the input signal P;, and its
corresponding level L;, are:

P, V2
L, = 1Olog(1m”;/V) = 101og[m—-——’-’{-;1-V-VJ [dBm)] (5.101)

The factor 2 in (5.101) comes from the fact that V;, is a peak
value and not an RMS value. The level of the linear term of the
signal at the system output is given by:

GP.

P
- outl o iny _
Lo = 101og(1mW) = 101og(1 W) =L, +G,p (5.102)

where G is the gain in power G=P, .,/P; , which can be

in'
expressed as a function of the voltage gain k; and the ratio

between the input resistance R;, and the load resistance R;:

2 2
G = Vout 2Rin _ (k V ) k2 Rin (5 103)
2 2 R a R, '
ZRL Ve, Ve, L L

The amplitude of the 3rd order IM product at 2f; —f, is equal
to k V3 . The average power corresponding to ‘rhe Ioad terminal
RL IS ThUS

2

( k3 zn)
Pous = 31 (5.104)
corresponding to a level L, ;3
(k3 lﬂ)z 9 Rz?,n Vlzn ’
(5.105)
R3
3L +2010g(k )+1Olog(R J 56.5 = 3L +K
L
R3
where: = 20log(ky) + IOIOg[R j 56.5 (5.106)
L
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THIRD-ORDER INTERCEPT POINT (IP3) (2/2)

The levels L, cor'respondmg to the fundamental and L ;3 cor-
responding to the 3" order IM pr'oducT at 2f, —f5 . are shown
as a function of the input level L, in Fig. 5-27. The intersection
point of the lines L,,;; and L3 is called the third-order inter-
cept point (PI3). This point can be specified either by its projec-
tion on the x-axis IIP, or by its projection on the y-axis of L,
(OIP). Unfortunately, this point cannot be measured directly
because it corresponds to an extrapolation. The phenomena of
compression, desensitization, and higher-order IM products
deteriorate the linearity of the system for high power signals.

Loutl and Lout3

(dBm) k .
3rd order intercept
OIP —+ — —' r— point
e' D
Gyp ﬂ%‘
r compression
~Gyp v of the fundamental
1
l » L.
'1K | in
S|ope =1 "__ 1P (dBm)
fundamental ¢ 3

4

~P1vR-dB compression of third

order IM product

slope =3
third order )
IM products \A/
Lout] Lout3

Fig 5-27: 3" 4 order intercept point.

The value of IIP can be expressed as a function of k; and k3 by
using equations (5.102), (5.103) and (5.105) in the following man-
her:

IIP = 10log (k) — 10log(k;) — 10log(R; ) +28.24 [dBm] (5.107)
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RELATIONSHIP BETWEEN THE COMPRESSION POINTS
AND INTERCEPT POINTS IN “SINGLE TONE” AND “DUO
TONE”

Y, [dB] IMy = S ¥y = e

|
| —1dB |
| |

l477dB'  "9.64dB 4.77 B

[—>

| | | |

1 1 i i » X [dB]
X_1d8  X_1dB Xip XHpI

(duo tone) (single tone)
Fig 5-28: Relationship between the compression points at -1 dB
and the intercept points measured in “single tone” and
“duo tone.”

The relationship between the compression points at -1 dB and
the intercept points measured in "single tone" and "duo tone" are
illustrated in Fig. 5-28. Notice that the compression and inter-
cept points measured in “single tone" are 4.77 dB higher than
the compression and intercept points measured in "duo fone". We
can thus deduce the intercept point IIP from a “single tone”
measurement, which is much easier to do than a "duo tone" meas-
urement. This is not entirely correct in the case of a narrow-
band system, because the harmonics of a sinusoidal signal gener-
ally fall outside of ’rhe useful band and are thus strongly attenu-
ated while the 3™ order intermodulation products fall in the
baseband and are not attenuated.
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COMPARISON FOR A DIFFERENTIAL PAIR

Li,, [dBm]
-40 -35 -30 -25 -20 -15 -10
1

Yj et IMj normalisés a |4 [dB]

o R T 7. A T VA0 W A L U T T N L T M N T N T T NN N T T S LT A AN
6920 -15 -'|0+I -5+ 0 54 14 15

X X X X
-1dB -1dB 1P HDI
(duotone) (singletone)

20-log(Vin / (2-UT)) [dB]
Fig 5-29: Comparison of compression and intercept points
for“single tone” and “duo tone” signals for a differen-

tial pair.

A comparison between the compression and intercept points for
"single tone" and “duo tone" signals in the case of a differential
pair is presented in Fig. 5-29. Once again we find a difference of
4.77 dB.
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INTERMODULATION DISTORTION RATIO

The Intermodulation Distortion Ra’no (IMR) is the ratio between
the amplitude of one of the 3™ order IM products and the
amplitude of the linear term:

§k3X%X 3k
kX, 4k

IMR = 2X,X, (5.108)

The ratio between the power of the 3™ order IM products at
the output and the power of the linear term for the amplitudes
X; =X, =1V,,is given by:

2
P Q L& Vi) 2R

2 2
p. = _oud _ : L _ %E[ﬂ - EEzR . p2
IMR ™ p 2R (le. )2 4k1 in 4k1 in in
in

outl L
(5.109)

By definition, this ratio is equal to one when the input signal level
is equal to IIP corresponding to a power P;;p, from which we get:

Pin 2
P = (52) (5.110)
1
In decibels we have:
Pomag = 2+ (L, —IIP) (5.111)
We can thus express IIP as a function of P p_gp and L;,:
P
_ IMR-dB
IIP = L;,~—= (5.112)

The projection of the intersection point at the output is then
simply given by:

P IMR-dB

(5.113)
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MINIMUM DETECTABLE SIGNAL AND NOISE FLOOR

We have seen that the average noise factor F' represents the
quotient of the signal-to-noise ratios at the input SNR; and the
output SNR, of the two-port network. The minimum detectable
signal (MDS) corresponds to the value of the signal which must
be applied at the input in order to have a given signal-to-noise
ratio at the output. From (5.26), we find:

MDS=L . = NF+ 10log (kTB) + (SNR,,) ,,, + 30 [dBm]  (5.114)

For T'= 290 K and SNR, = 1 we have:
MDS = NF +10log(B, ;) — 144 [dBm] (5.115)

where B, is the bandwidth expressed in kHz. The output signal
level corresponding to an MDS level at the input is called the
Noise Floor. When the input signal exceeds the MDS, the output
signal level increases linearly beyond the noise floor. The level of
the IM product increases three times faster, but is initially lost
under the noise floor.

Loutl and Lout3

(dBm) A
OIP L — —

- Lin
/ 1P (dBm)

T\ Noise floor (SNR, = 1)

Lout Louss

Fig 5-30: Relationship between the MDS and the noise floor.
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DYNAMIC RANGE (1/2)

The dynamic range of a system is defined by the ratio between
the maximum and minimum signals that the system can process.
The minimum signal is limited by the noise while the maximum
signal is limited by distortion. For a narrow-band system such as
a receiver, the maximum signal is basically limited by the 3"
order IM produc‘rs The definition of the mimimum signal level
generally corresponds to the MDS. The maximum signal can be
defined in multiple ways. One possible definition corresponds to
the input signal level Ly, for which the level of the IM product
is equal to the MDS (cf Fig. 5-31).

Loutl and Lout3

(dBm) A
OIP

5 DRiqap

- == - —x Lout
» L,
IIP (dBm)
AIM
______ D

c
— — 1« Noise floor (SNR, = 1)

outl Loutj’

Fig 5-31: Relationship between the MDS and the dynamic range.
The Spurious Free Dynamic Range (SFDR) of the system is then
defined as the difference between L, and MDS:

SFDR=L;,,—~MDS  [dB] (5.116)
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DYNAMIC RANGE (2/2)

The maximum signal can be alternatively defined as the signal
that produces a 1 dB compression of the fundamental. If L; 5 is
the corresponding input level (cf Fig. 5-31), the dynamic range is
equal to the difference between L; 5 and MDS:

DR, =L, ,n,—MDS  [dB] (5.117)

The dynamic range can also be defined as a function of the signal
level L, for which the third-order IM product L,,; is at a value
AIM=L, ,-L,, 5 (typically 60 dB) below the level L,,,; cor-
responding to Ly:

DR, =L,—-MDS (5.118)

One can define several relationships from the geometry shown in
Fig. 5-31. Let b be the distance between the lines L,,;; and L ;3
and a be the distance between the line L, ;; and the point IIP.
Since the lines L,,;; and L,,;3 have, respectively, slopes of 1 and
3, then b = 2a. Drawing a horizontal line that passes through
the point F, we find that b = AIM and therefore
a = (AIM)/2 = IIP—L, , from which we find the relationship
for IIP:

IIP = AIM/2+ L, (5.119)

In addition, we see that a+b = 3a = (3b)/2, which lets us
write: [IP—-MDS = (3SFDR)/2 and so:

SFDR = %(HP—MDS) (5.120)

In a similar way, we see that IIP—L;, = SFDR/2, from which
we find the maximum input signal level for which the level of the
IM product is equal to the MDS:

Ly, = (2IIP + MDS)/3 (5.121)

An input signal level higher than that given by (5.121) gives an IM
product that increases three times faster than the desired sig-
nal, and causes an unacceptable distorsion.
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2"d ORDER INTERCEPT POINT (1/2)

The second-order IM products are given by £f, ¥ f; . For the
case in which f,>> f;, the frequency Af=f,-f =f, can be
near f> and thus interfere with the system. In the same way as
for the 3" order IM products, we define an intercept point of
the second-order IM products (cf Fig. 5-32).

Loutl and LoutZ

(dBm) ;
2"9 order intercept
OIP; — - point
I
/ l
|
7
i » L,
HP2 (dBm)

5

slope = 2

Loutl LoutZ

Fig 5-32: 2nd order intercept point.
The amfll’rudes of the second order IM products are both equal

to k, V% . The average power corresponding to the terminals of
the Ioad R; is:
(ky V7,
Pout2 2Rn (5122)
corresponding to a level L, ;>
) (V22 v2  \22R2 i21m
Four2 = 1Olog(sz- ) ~ 8\ 2% Taw) T R,
(5.123)
R2
= 2L, +20log(k,) + 1Olog[R j 27 =2L, +K,
L
where: K, =20log(k,) + 10log(R?,/R;) —27 [dB] (5.124)
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2"d ORDER INTERCEPT POINT (2/2)

The projection of the second-order intercept point is given by:

1 [ 4 1 [SO”{%] (5.125)
IIP, = 10lo +27 = 10lo .
? c k%Ri c k%Rin

The difference between the projections of the 374 and 2"9 order
intercept points is given by:

501k% 66.67k, kyky
1P, ~IIP = 10log| — — 10log = 10log = (5.126)

25%0n k3Ri” : 3k§
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EXAMPLE (1/2)

Consider an electronic system with a bandwidth of 10kHz, and
input and load resistances of 50Q. The input is matched to two
signal generators through the help of an adder for which the
attenuation is 6dB. The frequency of the fwo sine waves applied
to the input are f; = 3800 kHz and f, = 3802 kHz. When the
adder is calibrated, the level of each of the signals before the
adder is equal to 4 dBm. For this same input signal, the spectrum
analyzer measures a level of each of these two signals at the
output equal to 5 dBm and indicates that the 3" order IM com-
ponents are located 16 dB lower. We assume that the other IM
components are negligible and that there is no compression. The
measured noise level when there is no input signal is equal o -36
dBm. We are asked to calculate:

1) The corresponding input level L;,:

2)The gain in power G 3:

3)The 3" order intercept point IIP;

4)The mimimum detectable signal MDS;
5)The dynamic range SFDR of the system;
6)The noise figure NF’

7)The maximum RMS voltage at the system input before the
3™ order IM products become perceptible.
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EXAMPLE (2/2)

1) The input level is simply given by the difference between
the level measured before the adder (+4 dBm) minus the
attenuation of the adder (6 dB), so:

L, =4-6=-2dBm (5.127)
2)The gain in power is given by:
G=L,,~Ly=5-(-2)=7dB (5.128)
3)From (5.119), with L, = L; and AIM = 16 dB, we get:
e = A%l”m = 176+(—2) = 6dBm (5.129)

4)In the graph in Fig. 5-31, the distance CD is equal to 36 +
7 + 6 =49 dB, which also corresponds to the distance AC.

So:

MDS = IIP-49 = 6 —-49 = —43dBm (5.130)
which corresponds to an RMS voltage at the input of 1.58
mV.

5)From (5.120) we get:
SFDR = %(HP—MDS) = %(6—(—43)) = 32.67dB (5.131)

6)From (5.115) we get:
NF = MDS - 10log(B, ) + 144 = —43 -10+ 144 = 91dB
(5.132)
7)From (5.121) we get:

2IIP+MDS _ 2-6—43
Ly, = . = S5 = -1033dBm  (5.133)

which corresponds to an RMS voltage at the input of 68.1
mV.
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IM DISTORSION AT THE OUTPUT

The 34 order intercept point (PI3) in relation to the input is
given by (5.119), and repeated here:

IIP = AIM/2+L, [dBm] (5.134)

The PI3 in relation to the output is obtained simply from (5.134)
by adding the gain (in dB):

OIP = [IP+G = AIM/2+L,+G [dBm]  (5.135)

Let L, be the output level corresponding to L, and D,,, the
distortion level at the output corresponding to an input level L,
AIM is by definition equal to the difference between the oquuT
signal level (in dBm) and the corresponding level of the 3rd order
IM component (cf Fig. 5-31):

L —D = AIM [dBm] (5.136)

out out

Inaddition: L, =L,+G—>L, =L, -G  [dBm] (5.137)

By plugging the equations (5.136) and (5.137) into (5.135), we get:
orp =3 -lp [dBm] (5.138)

2%out 2 out

If we express OIP not in dBm but directly in Watts we get:

3
op =P, /D, . [W] (5.139)

The PI3 (in Watts) can thus be calculated from the measure-
ment of the signal power P, and from the IM distorsion at the
output D,,;. Knowing OIP (in Watts), we can also express the
distorsion at the output corresponding to a certain power P,

3

P
D,, = 0“’2 [W] (5.140)

OIP
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IM DISTORSION AND THE CORRELATION COEFFICIENT

Fig. 5-33 shows a nonlinear amplifier, subject fo a two-tone sig-
nal such as that described by (5.89), and producing IM products
at its output. The power of the useful signal (in the passband of
the system) is P;, and the power of the possible IM products
falling in the passband and already existing at the input is D;,,.

input power:

output power:
Py, —®nonlinear amplifier—— P,,=GP,

Possible IM distortion gain G
at the input: generates

D;,, — IM distortion Dy, >D = Damp +GD,

+2C,[GD,,D,,.,

Fig 5-33: Input and output power of an amplifier subject to a

Iwo-tone test.
The IM distortion at the amplifier output is equal to the distor-

tion produced by the amplifier D,,,,, plus the distorsion already
present at the input multiplied by the gain G and an additive
term 2CA/GDinDamp taking into account the correlation exist-
ing between the distortion already existing at the input and the
distortion generated by the amplifier itself. For the case in
which the correlation coefficient C is zero, we have:

D =D +GD, [W] (5.141)

The two distortion ferms add up in power (like independent noise
sources). If they are perfectly correlated (C = 1), we geft:

Dout - Damp + GDin +2/\/(;DinDamp - (/\/Damp T /\/GDin)z [W](5142)

The two distortion components thus add up in voltage (or in cur-
rent).
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3'd ORDER INTERCEPT POINT FOR AN AMPLIFIER
CASCADE (1/2)

G, G,
Py, Poutl - GIPin Pout - G1G2Pin
—> - L
1t amp 2" amp
- |
Damp] Dout
oIp, oIP,

Fig 5-34: Two cascaded amplifiers subject to a two-tone input
signal.
Consider the cascade connection of two ampln‘ler's characterized

by their gains in power G; and their 3™ order intercept points
OIP;(i = 1,2).If C = 1 we get:

Dout - («/G2Damp1 + «/Damp2)2 (7] (5 143)

From (5.139), the PI3 corresponding to the cascade connection
of two amplifiers is:

_ (G1G2Pin)3/2
- »\/GZDampl + A/DampZ
But from (5.140), we get:

3 3
G,P. G,G,P.
(OIP,) (01P,)

OIP|,. [7] (5.144)

and so:
(5.146)

L]

1 . 1 7! B G20]P10]P2
[G OIP, O[PJ ~ G,0IP, + OIP,

where G,OIP, corresponds to the PI3 of the first amplufler' in
relation ‘ro ‘rhe output of the second amplifier. The 3™ order

intercept points combine like parallel resistances (for the case in
which C = 1).

O[P|C:1 =
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3'd ORDER INTERCEPT POINT FOR AN AMPLIFIER
CASCADE (2/2)

If C = 0, Egn. 5.141 gives:
Dout - Damp2 + G2Damp1 (7] (5147)
and then after (5.139):

(G1G2Pin)3/2
OIP|._, = [7] (5.148)
=0 «/G2Damp1 + Damp2

Plugging in D1 and D,p,> with the help of (5.145), we get:

1 1 -1/2
OIP|._, = { -+ 2} (5.149)
(G,0IP,)" (OIP,)
G,0IP,OIP,
= = = [W]
J(szpl) +(0IP,)

or brought back to the input:

= —_ + | — .
P, _, [HPI 777, } (5.150)

The denominator of (5.149) being smaller than that of (5.146),
the PI3 for C = 0 is greater than that obtained for C = 1.
The real intercept point is usually between two extremes:

G,O0IP,OIP, G,O0IP,OIP, 515
< <
G,01P, ~oip, - O''= > > (5-151)
(G,0IP,)" + (OIP,)
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nt" ORDER INTERCEPT POINT FOR AN AMPLIFIER
CASCADE

We can generalize (5.150) for the calculation of an nth order
intercept point for a chain of amplifiers:

(5.152)
LN 0 Y e " (GG (GGG )"
mp|._,  |\up) "\IP r, ) 7

where m =n— 1 and IIP (expressed in W) corresponds to the n™"
order intercept point brought back to the cascade input.
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